«ИЗВЕСТИЯ ИРКУТСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА». СЕРИЯ «БИОЛОГИЯ. ЭКОЛОГИЯ»
«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

Список выпусков > Серия «Биология. Экология». 2023. Том 44

Агрохимические аспекты применения медьсодержащих наноструктур: влияние на рост и развитие растений, антибактериальный эффект (обзор)

Автор(ы)
А. И. Перфильева, Н. С. Забанова
Аннотация
Представлены основные сведения о механизмах воздействия медьсодержащих наночастиц на растительный организм. На примерах исследований в этой области продемонстрировано влияние таких наночастиц на процессы роста и развития растений, биохимические процессы, влияние на экспрессию генов в клетке, на сопротивляемость растений к биотическим и абиотическим стрессовым факторам. Показана перспективность применения наномеди в качестве минеральных удобрений. Описаны механизмы активности медьсодержащих наночастиц против бактериальных фитопатогенов культурных растений и ряда бактерий, патогенных для человека и животных. Обсуждаются многообещающие перспективы сельскохозяйственного использования наночастиц меди и подходы, позволяющие избегать возможных негативных эффектов их применения.
Об авторах

Перфильева Алла Иннокентьевна, кандидат биологических наук, старший научный сотрудник, Сибирский институт физиологии и биохимии растений СО РАН, Россия, 664033, г. Иркутск, ул. Лермонтова, 132, e-mail: alla.light@mail.ru

Забанова Наталья Сергеевна, кандидат биологических наук, старший научный сотрудник, Сибирский институт физиологии и биохимии растений СО РАН, Россия, 664033, г. Иркутск, ул. Лермонтова, 132, доцент, Иркутский государственный университет, Россия, 664003, г. Иркутск, ул. К. Маркса, e-mail: pavnatser@mail.ru

Ссылка для цитирования
Перфильева А. И., Забанова Н. С. Агрохимические аспекты применения медьсодержащих наноструктур: влияние на рост и развитие растений, антибактериальный эффект (обзор) // Известия Иркутского государственного университета. Серия Биология. Экология. 2023. Т. 44. С. 3–26. https://doi.org/10.26516/2073-3372.2023.44.3
Ключевые слова
растения, медь, наночастицы, нанокомпозиты, бактерии, стресс, фитопатогены, антиоксидантная система, перекисное окисление липидов.
УДК
577.2
DOI
https://doi.org/10.26516/2073-3372.2023.44.3
Литература

Биотестирование наноматериалов: о возможности транслокации наночастиц в пищевые сети / Ю. Н. Моргалёв, Н. С. Хоч, Т. Г. Моргалёва, Е. С. Гулик, Г. А. Борило, У. А. Булатова, С. Ю. Моргалёв, Е. В. Понявина // Российские нанотехнологии. 2010. Т. 11–12. С. 131–135.

Дыкман Л. А., Щёголев С. Ю. Взаимодействие растений с наночастицами благородных металлов (обзор) // Сельскохозяйственная биология. 2017. Т. 52. С. 13–24.

Иванищев В. В. Биоаккумуляция, гомеостаз и токсичность меди в растениях // Известия Тульского государственного университета. Естественные науки. 2020. № 1. С. 33–41.

Каталымов М. В. Микроэлементы и микроудобрения. М. : Химия, 1965. 332 с.

A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage / A. Pramanik, D. Laha, D. Bhattacharya, P. Pramanik, P. Karmakar // Colloids and Surfaces B: Biointerfaces. 2012. Vol. 96. P. 50–55. https://doi.org/10.1016/j.colsurfb.2012.03.021

Abbasifar A., Shahrabadi F., ValizadehkKaji B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant // J. Plant Nutr. 2020. Vol. 43. P. 1104–1118. https://doi.org/10.1080/01904167.2020.1724305

Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles / Y. Su, X. Zheng, Y. Chen, M. Li, K. Liu // Sci. Rep. 2015. Vol. 5. Art. 15824. https://doi.org/10.1038/srep15824

Antibacterial activity of copper nanoparticles (CuNPs) against a resistant calcium hydroxide multispecies endodontic biofilm / B. Rojas, N. Soto, M. Villalba, H. Bello-Toledo, M. MeléndrezCastro, G. Sánchez-Sanhueza // Nanomaterials. 2021. Vol. 11, N 9. Art. 2254. https://doi.org/10.3390/nano11092254

Antibacterial cotton fabric functionalized with copper oxide nanoparticles / L. E. Román, E. D. Gomez, J. L. Solís, M. M. Gómez // Molecules. 2020. Vol. 25, N 24. Art. 5802. https://doi.org/10.3390/molecules25245802

Antibacterial effect of copper sulfide nanoparticles on infected wound healing / Y. Liang, J. Zhang, H. Quan, P. Zhang, K. Xu, J. He, Y. Fang, J. Wang, P. Chen // Surg. Infect. (Larchmt). 2021. Vol. 22, N 9. P. 894–902. https://doi.org/10.1089/sur.2020.411

Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process / S. Kannan, P. Vinitha, K. Mohanraj, G. Sivakumar // J. Solid State Chem. 2018. Vol. 258. P. 376–382. https://doi.org/10.1016/j.jssc.2017.11.005

Aspartic acid-based nano-copper induces resilience in Zea mays to applied lead stress via conserving photosynthetic pigments and triggering the antioxidant Biosystem / R. Ullah, Z. Ullah, J. Iqbal, W. Chalgham, A. Ahmad // Sustainability. 2023. Vol. 15. Art. 12186. https://doi.org/10.3390/su151612186

Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs) / S.-Y. Teow, M. M.-T. Wong, H.-Y. Yap, S.-C. Peh, K. Shameli // Molecules. 2018. Vol. 23. Art. 1366. https://doi.org/10.3390/molecules23061366

Bezza F. A., Tichapondwa S. M., Chirwa E. M. N. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents // Sci. Rep. 2020. Vol. 10, N 1. Art. 16680. https://doi.org/10.1038/s41598-020-73497-z

Bimetallic palladium and copper nanoparticles: Lethal effect on the gram-negative bacterium Pseudomonas aeruginosa / X. Huang, T. Li, X. Zhang, J. Deng, X. Yin // Mater. Sci. Eng. C. Mater. Biol. Appl. 2021. Vol. 129. Art. 112392. https://doi.org/10.1016/j.msec.2021.112392

Characterisation of copper oxide nanoparticles for antimicrobial applications / G. Ren, D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, R. P. Allaker // Int. J. Antimicrob. Agents. 2009. Vol. 33, N 6. P. 587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress / H. Hernández-Hernández, A. Juárez-Maldonado, A. Benavides-Mendoza, H. Ortega-Ortiz, G. Cadenas-Pliego, D. Sánchez-Aspeytia, S. González-Morales // Agronomy. 2018. Vol. 8. Art. 175. https://doi.org/10.3390/agronomy8090175

Clue of zinc oxide and copper oxide nanoparticles in the remediation of cadmium toxicity in Phaseolus vulgaris L. via the modulation of antioxidant and redox systems / S. Hidouri, I. Karmous, O. Kadri, O. Kharbech, A. Chaoui // Environ. Sci. Pollut. Res. Int. 2022. Vol. 56. P. 85271–85285. https://doi.org/10.1007/s11356-022-21799-2

Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan / Y. H. Kim, G. H. Kim, K. S. Yoon, S. Shiv, J.-W. Rhim // Microb. Pathogen. 2020. Vol. 144. Art. 104178. https://doi.org/10.1016/j.micpath.2020.104178

Considerable variation of antibacterial activity of cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes / O. V. Zakharova, A. Yu. Godymchuk, A. A. Gusev, S. I Gulchenko, I. A. Vasyukova, D. V. Kuznetsov // BioMed Res. Int. 2015. Vol. 2015. Art. 412530. https://doi.org/10.1155/2015/412530

Copper/carbon hybrid nanozyme: Tuning catalytic activity by copper state for antibacterial therapy / J. Xi, G. Wei, L. An, Z. Xu, Z. Xu, L. Fan, L. Gao // Nano Letters. 2019. Vol. 19, N 11. P. 7645–7654. https://doi.org/10.1021/acs.nanolett.9b02242

Copper-based nanoparticles against microbial infections / X. Li, Y. Cong, M. Ovais, M. B. Cardoso, S. Hameed, R. Chen, M. Chen, L. Wang // Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023. Vol. 15, N 4. Art. e1888. https://doi.org/10.1002/wnan.1888

Copper-based nanostructures: Antimicrobial properties against agri-food pathogens. Chapter 19. / J. M. Rajwade, R. C. Chikte, N. Singh, K. M. Paknikar // Copper nanostructures: Nextgeneration of agrochemicals for sustainable agroecosystems. Elsevier, 2022. P. 477–503. https://doi.org/10.1016/B978-0-12-823833-2.00031-3

Copper-modified polymeric membranes for water treatment: A comprehensive review / A. García, B. Rodríguez, H. Giraldo, Y. Quintero, R. Quezada, N. Hassan, H. Estay // Membranes (Basel). 2021. Vol. 11, N 2. Art. 93. https://doi.org/10.3390/membranes11020093

CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni / R. Javed, A. Mohamed, B. Yucesan, G. Ekrem, R. Kausar, M. Zia // Plant Cell Tiss. Org. 2017. Vol. 131. P. 611–620. https://doi.org/10.1007/s11240-017-1312-6

Da Costa M. V. J., Sharma P. K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa // Photosynthetica. 2016. Vol. 54, N 1. P. 110–119. https://doi.org/10.1007/s11099-015-0167-5

Effect of copper oxide and silver nanoparticles on the development of tolerance to Alternaria alternata in poplar in vitro clones / T. A. Grodetskaya, O. A. Fedorova, P. M. Evlakov, O. Yu. Baranov, O. V. Zakharova, A. A. Gusev // Nanobiotechnol. Rep. 2021. Vol. 16, N 2. P. 231–238. https://doi.org/10.1134/S2635167621020063

Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton / N. L. Van, C. Ma, J. Shang, Y. Rui, S. Liu, B. Xing // Chemosphere. 2016. Vol. 144. P. 661–670. https://doi.org/10.1016/j.chemosphere.2015.09.028

Effect of different copper oxide particles on cell division and related genes of soybean roots / C. Liu, Y. Yu, H. Liu, H. Xin // Plant Physiol. Biochem. 2021. Vol. 163. P. 205–214. https://doi.org/10.1016/j.plaphy.2021.03.051

Effect of methods application of copper nanoparticles in the growth of avocado plants / J. López-Luna, Y. Nopal-Hormiga, L. López-Sánchez, A. I. Mtz-Enriquez, N. Pariona // Sci. Total Environ. 2023. Vol. 880. Art. 163341. https://doi.org/10.1016/j.scitotenv.2023.163341

Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism / P. Lv, L. Zhu, Y. Yu, W. Wang, G. Liu, H. Lu // Mater. Sci. Eng. C. Mater. Biol. Appl. 2020. Vol. 110. Art. 110669. https://doi.org/10.1016/j.msec.2020.110669

Effect of the concentration and the type of dispersant on the synthesis of copper oxide nanoparticles and their potential antimicrobial applications / M. Guzman, M. Arcos, J. Dille, C. Rousse, S. Godet, L. Malet // ACS Omega. 2021. Vol. 6, N 29. P. 18576–18590. https://doi.org/10.1021/acsomega.1c00818

Ermini M. L., Voliani V. Antimicrobial nano-agents: The copper age // ACS Nano. 2021. Vol. 15, N 4. P. 6008–6029. https://doi.org/10.1021/acsnano.0c10756

Fargašová A. Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. // Plant, Soil and Environment. 2004. Vol. 50, N 1. P. 33–38.

Feigl G. The impact of copper oxide nanoparticles on plant growth: A comprehensive review // J. Plant Interact. 2023. Vol. 18, N 1. Art. 2243098. https://doi.org/10.1080/17429145.2023.2243098

Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes / E. R. López-Vargas, H. Ortega-Ortíz, G. Cadenas-Pliego, K. de Alba Romenus, M. C. de la Fuente, A. Benavides-Mendoza, A. Juárez-Maldonado // Appl. Sci. 2018. Vol. 8. Art. 1020. https://doi.org/10.3390/app8071020

Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions / M. Nekoukhou, S. Fallah, L. R. Pokhrel, A. AbbasiSurki, A. Rostamnejadi // Sci. Total Environ. 2023. Vol. 863. Art. 160920. https://doi.org/10.1016/j.scitotenv.2022.160920

Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens / N. Pariona, A. I. Mtz-Enriquez, D. Sánchez-Rangel, G. Carrión, F. Paraguay-Delgadoe, G. RosasSaito // RSC Adv. 2019. Vol. 9, N 33. P. 18835–18843. https://doi.org/10.1039/c9ra03110c

Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth / M. Noman, M. Shahid, T. Ahmed, M. Tahir, T. Naqqash, S. Muhammad, F. Song, H. M. A. Abid, Z. Aslam // Ecotoxicol. Environ. Saf. 2020. Vol. 192. Art. 110303. https://doi.org/10.1016/j.ecoenv.2020.110303

Gross E. L. Plastocyanin: Structure and function // Photosynth. Res. 1993. Vol. 37. P. 103–116. https://doi.org/10.1007/BF02187469

Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study // J. Chem. Biol. 2014. Vol. 7. P. 133–141. https://doi.org/10.1007/s12154-014-0113-1

Hashim A., Agool I. R., Kadhim K. J. Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: A review // J. Bionanosci. 2018. Vol. 12, N 5. P. 608–613. https://doi.org/10.1166/jbns.2018.1580

Hopkins W. G., Huner N. P. A. Introduction to plant physiology. New York : J. Wiley & Sons, 2008. 528 p.

Hydrothermal synthesis of copper based nanoparticles: Antimicrobial screening and interaction with DNA / K. Giannousi, K. Lafazanis, J. Arvanitidis, A. Pantazaki, C. Dendrinou-Samara // J. Inorgan. Biochem. 2014. Vol. 133. P. 24–32. https://doi.org/10.1016/j.jinorgbio.2013.12.009

Influence of copper oxide nanoparticles on gene expression of birch clones in vitro under stress caused by phytopathogens / T. A. Grodetskaya, P. M. Evlakov, O. A. Fedorova, V. I. Mikhin, O. V. Zakharova, E. A. Kolesnikov, N. A. Evtushenko, A. A. Gusev // Nanomaterials (Basel). 2022. Vol. 12, N 5. Art. 864. https://doi.org/10.3390/nano12050864

Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment / B. M. Reed, J. Mentzer, P. Tanprasert, X. Yu // Plant Cell, Tissue and Organ Culture. 1998. Vol. 52. P. 67–70. https://doi.org/10.1007/978-94-015-8951-2_20

Investigation the activities of photosynthetic pigments, antioxidant enzymes and inducing genotoxicity of cucumber seedling exposed to copper oxides nanoparticles stress / M. Abdelkader, R. A. Geioushy, O. A. Fouad, A. G. A. Khaled, L. P. Voronina // Scientia Horticulturae. 2022. Vol. 305. Art. 111364. https://doi.org/10.1016/j.scienta.2022.111364

Kasana R. C., Panwar N. R., Kaul R. K. Biosynthesis and effects of copper nanoparticles on plants // Environ. Chem. Lett. 2017. Vol. 15. P. 233–240. https://doi.org/10.1007/s10311-017-0615-5

Maithreyee M. N., Gowda R. Influence of nanoparticles in enhancing seed quality of aged seeds // Mysore J. Agric. Sci. 2015. Vol. 49, N 2. P. 310–313.

Metal nanoparticles: Understanding the mechanisms behind antibacterial activity / Y. N. Slavin, J. Asnis, U. O. Häfeli, H. Bach // J. Nanobiotechnol. 2017. Vol. 15, N 1. Art. 65. https://doi.org/10.1186/s12951-017-0308-z

Mulder E. G. Mineral nutrition in relation to the biochemistry and physiology of potatoes // Plant and Soil. 1949. Vol. 2. P. 59–121. https://doi.org/10.1007/BF01344148

Multilevel approach to plant–nanomaterial relationships: from cells to living ecosystems / H. C. Oliveira, A. B. Seabra, S. Kondak, O. P. Adedokun, Z. Kolbert // J. Experim. Botany. 2023. Vol. 74, N 12. P. 3406–3424. https://doi.org/10.1093/jxb/erad107

Multifunctional copper-containing mesoporous glass nanoparticles as antibacterial and proangiogenic agents for chronic wounds / T. E. Paterson, A. Bari, A. J. Bullock, R. Turner, G. Montalbano, S. Fiorilli, C. Vitale-Brovarone, S. MacNeil, J. Shepherd // Front. Bioeng. Biotechnol. 2020. Vol. 8. https://doi.org/10.3389/fbioe.2020.00246

Nagaonkar D., Shende S., Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium // Biotechnol. Prog. 2015. Vol. 31, N 2. P. 557–565. https://doi.org/10.1002/btpr.2040

Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root / X. Wang, H. Xie, P. Wang, H. Yin // Materials. 2023. Vol. 16. Art. 3097. https://doi.org/10.3390/ma16083097

Nanoparticles in the environment: where do we come from, where do we go to? / M. Bundschuh, J. Filser, S. Ludermald, M. McKee, G. Metreveli, G. Shaumann, R. Schultz, S. Wagner // Environ. Sci. Europe. 2018. Vol. 30. Art. 6. https://doi.org/10.1186/s12302-018-0132-6

New hybrid copper nanoparticles/conjugated polyelectrolyte composite with antibacterial activity / I. A. Jessop, Y. P. Pérez, A. Jachura, H. Nuñez, C. Saldías, M. Isaacs, A. Tundidor-Camba, C. A. Terraza, I. Araya-Durán, M. B. Camarada, J. J. Cárcamo-Vega // Polymers. 2021. Vol. 13. N 3. Art. 401. https://doi.org/10.3390/polym13030401

Peña M. M. O., Lee J., Thiele D. J. A delicate balance: Homeostatic control of copper uptake and distribution // J. Nutr. 1999. Vol. 129, N 7. P. 1251–1260. https://doi.org/10.1093/jn/129.7.1251

Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens / A. I. El-Batal, G. S. ElSayyad, F. M. Mosallam, R. M. Fathy // J. Cluster Sci. 2020. Vol. 31. P. 79–90. https://doi.org/10.1007/s10876-019-01619-3

Persistence in phytopathogenic bacteria: Do we know enough? / P. M. M. Martins, M. V. Merfa, M. A. Takita, A. A. De Souza // Frontiers in Microbiology. 2018. Vol. 9. Art. 1099. https://doi.org/10.3389/fmicb.2018.01099

Plant-mediated copper nanoparticles for agri-ecosystem applications. Chapter 4 / H. I. Mohamed, T. K. Sajyan, R. Shaalan, R. Bejjani, Y. N. Sassine, A. Basite // Nanobiotechnology for Plant Protection. 2022. P. 79–120. https://doi.org/10.1016/B978-0-12-823575-1.00025-1

Pollock K., Barfield D. G., Shields R. The toxicity of antibiotics to plant cell cultures // Plant Cell Rep. 1983. Vol. 2, N 1. P. 36–39. https://doi.org/10.1007/BF00269232

Pontel L., Checa S., Soncini F. Bacterial сopper resistance and virulence // Bacteria-metal interactions. Switzerland : Springer, 2015. P. 1–19. https://doi.org/10.1007/978-3-319-18570-5_1

Potential of copper nanoparticles to increase growth and yield of wheat / A. Hafeez, A. Razzaq, T. Mahmood, H. M. Jhanzab // J. Nanosci. Adv. Tech. 2015. Vol. 1, N 1. P. 6–11. https://doi.org/10.24218/JNAT.2015.02

Reduced graphene oxide-based nanometal-composite containing copper and silver nanoparticles protect tomato and pepper against Xanthomonas euvesicatoria infection / Z. Bytešníková, J. Pečenka, D. Tekielska, T. Kiss, P. Švec, A. Ridošková, P. Bezdička, J. Pekárková, A. Eichmeier, R. Pokluda, V. Adam, L. Richtera // Chem. Biol. Technol. Agric. 2022. Vol. 9. Art. 84. https://doi.org/10.1186/s40538-022-00347-7

Sereena M. C., Sebastian D. Cloning, expression and characterization of the anticancer protein azurin from an indigenous strain Pseudomonas aeruginosa SSj // Int. J. Peptide Res. Therap. 2020. Vol. 26. P. 1223–1230. https://doi.org/10.1007/s10989-019-09924-1

Shah V., Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds // Water Air Soil Pollut. 2009. Vol. 197, N 1. P. 143–148. https://doi.org/10.1007/s11270-008-9797-6

Siddiqi K. S., Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review // Biomater. Res. 2020. Vol. 24. Art. 11. https://doi.org/10.1186/s40824-020-00188-1

Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells / T. Ameh, M. Gibb, D. Stevens, S. H. Pradhan, E. Braswell, C. M. Sayes // Nanomaterials (Basel). 2022. Vol. 12, N 14. Art. 2402. https://doi.org/10.3390/nano12142402

Size-dependent biological effects of copper nanopowders on mustard seedlings / D. Churilov, V. Churilova, I. Stepanova, S. Polischuk, A. Gusev, O. Zakharova, I. Arapov, G. Churilov // IOP Conf. Ser. : Earth Environ. Sci. 2019. Vol. 392. Art. 012008. https://doi.org/10.1088/1755-1315/392/1/012008

Sobiczewski P., Iakimova E. T. Plant and human pathogenic bacteria exchanging their primary host environments // J. Horticult. Res. 2022. Vol. 30. P. 11–30. https://doi.org/10.2478/johr-2022-0009

Solioz M., Odermatt A., Krapf R. Copper pumping ATPases: common concepts in bacteria and man // FEBS Lett. 1994. Vol. 346. P. 44–47. https://doi.org/10.1016/0014-5793(94)00316-5

Synthesis of biologically active copper oxide nanoparticles as promising novel antibacterialantibiofilm agents / F. Erci, R. Cakir-Koc, M. Yontem, E. Torlak // Prep. Biochem. Biotechnol. 2020. Vol. 50, N 6. P. 538–548. https://doi.org/10.1080/10826068.2019.1711393

The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter / D. Lopez-Lima, A. I. Mtz-Enriquez, G. Carrión, S. Basurto-Cereceda, N. Pariona // Scientia Horticulturae. 2021. Vol. 277. Art. 109810. https://doi.org/10.1016/j.scienta.2020.109810

The effects of CuO nanoparticles on wheat seeds and seedlings and Alternaria solani fungi: in vitro study / O. Zakharova, E. Kolesnikov, N. Shatrova, A. Gusev // IOP Conf. Ser. Earth Environ. Sci. 2019. Vol. 226. Art. 012036. https://doi.org/10.1088/1755-1315/226/1/012036

The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L. / S. Anwaar, Q. Maqbool, N. Jabeen, M. Nazar, F. Abbas, B. Nawaz, T. Hussain, S. Hussain // Front. Plant. Sci. 2016. Vol. 7. Art. 1330. https://doi.org/10.3389/fpls.2016.01330

The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent / O. Panyuta, V. Belava, S. Fomaidi, O. Kalinichenko, M. Volkogon, N. Taran // Nanoscale Res. Lett. 2016. Vol. 11, N 1. Art. 92. https://doi.org/10.1186/s11671-016-1305-0

The effect of silver and copper nanoparticles on the wheat-Pseudocercosporella herpotrichoides pathosystem / V. N. Belava, O. O. Panyuta, G. M. Yakovleva, Y. M. Pysmenna, M. V. Volkogon // Nanoscale Res. Lett. 2017. Vol. 12, N 1. Art. 250. https://doi.org/10.1186/s11671-017-2028-6

The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity an anti-phyto-microbial activity / R. Bhattacharjee, L. Kumar, N. Mukerjee, U. Anand, A. Dhasmana, S. Preetam, S. Bhaumik, S. Sihi, S. Pal, T. Khare, S. Chattopadhyay, S. A. El-Zahaby, A. Alexiou, E. P. Koshy, V. Kumar, S. Malik, A. Dey, J. Pro´ckow // Biomed. Pharmacother. 2022. Vol. 155. Art. 113658. https://doi.org/10.1016/j.biopha.2022.113658

The impact of copper oxide and silver nanoparticles on woody plants obtained by in vitro method / O. A. Fedorova, T. A. Grodetskaya, N. Evtushenko, P. M. Evlakov, A. A. Gusev, O. V. Zakharova // IOP Conf. Ser. : Earth Environ. Sci. 2021. Vol. 875. Art. 012048. https://doi.org/10.1088/1755-1315/875/1/012048

The influence of Cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro / T. E. Talankova-Sereda, K. V. Liapina, E. A. Shkopinskij, A. I. Ustinov, A. V. Kovalyova, P. G. Dulnev, N. I. Kucenko // Nanosci. Nanoeng. 2016. Vol. 4, N 2. P. 31–39. https://doi.org/10.13189/nn.2016.040201

Yruela I. Copper in plants: acquisition, transport and interactions // Funct. Plant Biol. 2009. Vol. 36, N 5. P. 409–430. https://doi.org/10.1071/FP08288

Zakharova O. V., Gusev A. A. Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: Prospects // Nanotechnologies in Russia. 2019. Vol. 14. P. 311–324. https://doi.org/10.1134/S1995078019040141


Полная версия (русская)