«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2023. Vol 44

Agrochemical Aspects of the Use of Copper-Containing Nanostructures: Influence on Plant Growth and Development, Antibacterial Effect: A Review

Author(s)
A. I. Perfileva, N. S. Zabanova
Abstract
Copper is an essential trace element for plant organisms, but in high concentrations it can be toxic to plants. Copper nanoparticles (NPs) are less toxic, and their use in plant treatment appears to be safer, more effective, and more economical than copper salts. The mini-review provides basic information about the mechanisms of action of copper-containing NPs on the plant organism and provides examples of research in this area. The main directions of influence of copper-containing NPs on plants are the processes of growth and development of the plant organism (organogenesis, mitosis, biomass accumulation), biochemical processes (the intensity of photosynthesis, antioxidant status and the intensity of lipid peroxidation processes), the effect on gene expression in the cell, the effect on plant resistance abiotic and biotic stress factors. The promise of using copper NPs as mineral fertilizers has been shown by stimulating seed germination, plant growth and development, and increasing plant resistance to stress factors under the influence of copper NPs. The protective effect of copper-containing NPs is often explained by their antioxidant activity. At the same time, there are a number of studies demonstrating the negative impact of copper-containing NPs on the growth and development of plants and the intensity of photosynthesis. The second part of the article is devoted to a description of the mechanisms of antimicrobial activity of copper-containing NPs. The antibacterial effect of copper-containing NPs is associated with the attachment of copper NPs to the surface of the bacterial cell with subsequent disruption of the membrane potential, which further leads to the development of oxidative stress and damage to vital biomolecules. Copper-containing NPs have a pronounced antibacterial effect against bacterial phytopathogens of cultivated plants Ralstonia solanacearum, Xanthomonas axonopodis, Erwinia amylovora, as well as against a number of bacteria pathogenic to humans and animals. Thus, copper NPs are promising agents for agriculture, but their effect on plants requires careful selection of optimal concentrations and comprehensive studies to avoid toxic effects.
About the Authors

Perfileva Alla Innokent'evna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: alla.light@mail.ru

Zabanova Natalya Sergeevna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: pavnatser@mail.ru

For citation
Perfileva A.I., Zabanova N.S. Agrochemical Aspects of the Use of Copper-Containing Nanostructures: Influence on Plant Growth and Development, Antibacterial Effect: A Review. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2023, vol. 44, pp. 3-26. https://doi.org/10.26516/2073-3372.2023.44.3 (in Russian)
Keywords
plants, copper, nanoparticles, nanocomposites, bacteria, stress, phytopathogens, antioxidant system, lipid peroxidation.
UDC
577.2
DOI
https://doi.org/10.26516/2073-3372.2023.44.3
References

Morgalyov Y.N, Hoch N.S., Morgalyova T.G, Gulik E.S, Borilo G.A, Bulatova U.A., Morgalyov S.Y, Ponjavina E.V. Biotestirovanie nanomaterialov: o vozmozhnosti translokacii nanochastic v pishchevye seti [Biotesting of nanomaterials: on the possibility of translocation of nanoparticles into food webs]. Rossijskie nanotekhnologii [Nanobiotechnology Reports]. 2010, vol. 11-12, pp. 131-135. (in Russian)

Dykman L.A., Shchyogolev S.Yu. Vzaimodejstvie rastenij s nanochasticami blagorodnyh metallov (obzor) [Interaction of plants with nanoparticles of precious metals (review)]. Selskohozyajstvennaya biologiya [Agricultural Biology]. 2017, vol. 52, pp. 13-24. (in Russian)

Ivanishchev V.V. Bioakkumulyaciya, gomeostaz i toksichnost medi v rasteniyah [Bioaccumulation, homeostasis and toxicity of copper in plants]. Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki [Proceedings of Tula State University. Natural Sciences]. 2020, vol. 1, pp. 33-41. (in Russian)

Katalymov M.V. Mikroelementy i mikroudobreniya [Trace elements and micronutrients]. Moscow, Himiya Publ., 1965, 332 p. (in Russian)

Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids and Surfaces B: Biointerfaces, 2012, vol. 96, pp. 50-55. https://doi.org/10.1016/j.colsurfb.2012.03.021

Abbasifar A., Shahrabadi F., ValizadehkKaji B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr., 2020, vol. 43, pp. 1104-1118. https://doi.org/10.1080/01904167.2020.1724305

Su Y., Zheng X., Chen Y., Li M., Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci. Rep., 2015. vol. 5, 15824. https://doi.org/10.1038/srep15824

Rojas B., Soto N., Villalba M., Bello-Toledo H., Meléndrez-Castro M., Sánchez-Sanhueza G. Antibacterial activity of copper nanoparticles (CuNPs) against a resistant calcium hydroxide multispecies endodontic biofilm. Nanomaterials, 2021, vol. 11, no. 9, 2254.https://doi.org/10.3390/nano11092254

Román L.E., Gomez E.D., Solís J.L., Gómez M.M. Antibacterial cotton fabric functionalized with copper oxide nanoparticles. Molecules, 2020, vol. 25, no. 24, 5802. https://doi.org/10.3390/molecules25245802

Liang Y., Zhang J., Quan H., Zhang P., Xu K., He J., Fang Y., Wang J., Chen P. Antibacterial effect of copper sulfide nanoparticles on infected wound healing. Surg. Infect. (Larchmt), 2021, vol. 22, no. 9, pp. 894-902. https://doi.org/10.1089/sur.2020.411

Kannan S., Vinitha P., Mohanraj K., Sivakumar G. Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process. J. Solid State Chem., 2018, vol. 258, pp. 376-382. https://doi.org/10.1016/j.jssc.2017.11.005

Ullah R., Ullah Z., Iqbal J., Chalgham W., Ahmad A. Aspartic acid-based nano-copper induces resilience in Zea mays to applied lead stress via conserving photosynthetic pigments and triggering the antioxidant biosystem. Sustainability, 2023, vol. 15, 12186.https://doi.org/10.3390/su151612186

Teow S.-Y., Wong M.M.-T., Yap H.-Y., Peh S.-C., Shameli K. Bactericidal properties of plants-derived metal and metal oxide nanoparticles (NPs). Molecules, 2018, vol. 23, 1366.https://doi.org/10.3390/molecules23061366

Bezza F.A., Tichapondwa S.M., Chirwa E.M.N. Fabrication of monodispersed copper oxide nanoparticles with potential application as antimicrobial agents. Sci. Rep., 2020, vol. 10, no. 1,16680.https://doi.org/10.1038/s41598-020-73497-z

Huang X., Li T., Zhang X., Deng J., Yin X. Bimetallic palladium and copper nanoparticles: Lethal effect on the gram-negative bacterium Pseudomonas aeruginosa. Mater. Sci. Eng. C. Mater. Biol. Appl., 2021, vol. 129, 112392. https://doi.org/10.1016/j.msec.2021.112392

Ren G., Hu D., Cheng E.W.C., Vargas-Reus M.A., Reip P., Allaker R.P. Characterisation of copper oxide nanoparticles for antimicrobial applications. Int. J. Antimicrob. Agents, 2009, vol. 33, no. 6, pp. 587-590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

Hernández-Hernández H., Juárez-Maldonado A., Benavides-Mendoza A., Ortega-Ortiz H., Cadenas-Pliego G., Sánchez-Aspeytia D., González-Morales S. Chitosan-PVA and copper nanoparticles improve growth and overexpress the SOD and JA genes in tomato plants under salt stress. Agronomy, 2018, vol. 8, 175. https://doi.org/10.3390/agronomy8090175

Hidouri S., Karmous I., Kadri O., Kharbech O., Chaoui A. Clue of zinc oxide and copper oxide nanoparticles in the remediation of cadmium toxicity in Phaseolus vulgaris L. via the modulation of antioxidant and redox systems. Environ. Sci. Pollut. Res. Int., 2022, vol. 56, pp. 85271-85285.https://doi.org/10.1007/s11356-022-21799-2

Kim Y.H., Kim G.H., Yoon K.S., Shiv S., Rhim J.-W. Comparative antibacterial and antifungal activities of sulfur nanoparticles capped with chitosan. Microb. Pathogen., 2020, vol. 144, 104178. https://doi.org/10.1016/j.micpath.2020.104178

Zakharova O.V., Godymchuk A.Yu., Gusev A.A., Gulchenko S.I, Vasyukova I.A., Kuznetsov D.V. Considerable variation of antibacterial activity of cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. BioMed Res. Int., 2015, vol. 2015, 412530.https://doi.org/10.1155/2015/412530

Xi J., Wei G., An L., Xu Z., Xu Z., Fan L., Gao L. Copper/carbon hybrid nanozyme: Tuning catalytic activity by copper state for antibacterial therapy. Nano Letters, 2019, vol. 19, no. 11,pp. 7645-7654. https://doi.org/10.1021/acs.nanolett.9b02242

Li X., Cong Y., Ovais M., Cardoso M. B., Hameed S., Chen R., Chen M., Wang L. Copperbased nanoparticles against microbial infections. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, vol. 15, no. 4, e1888. https://doi.org/10.1002/wnan.1888

Rajwade J.M., Chikte R.C., Singh N., Paknikar K.M. Copper-based nanostructures: Antimicrobial properties against agri-food pathogens. Chapter 19. Copper nanostructures: Next-generation of agrochemicals for sustainable agroecosystems. Elsevier, 2022, pp. 477-503.https://doi.org/10.1016/B978-0-12-823833-2.00031-3

García A., Rodríguez B., Giraldo H., Quintero Y., Quezada R., Hassan N., Estay H. Coppermodified polymeric membranes for water treatment: A comprehensive review. Membranes (Basel), 2021, vol. 11, no. 2, 93. https://doi.org/10.3390/membranes11020093

Javed R., Mohamed A., Yucesan B., Ekrem G., Kausar R., Zia M. CuO nanoparticles significantly influence in vitro culture, steviol glycosides, and antioxidant activities of Stevia rebaudiana Bertoni. Plant Cell Tiss. Org., 2017, vol. 131, pp. 611-620. https://doi.org/10.1007/s11240-017-1312-6

Da Costa M.V.J., Sharma P.K. Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica, 2016, vol. 54, no. 1, pp. 110-119. https://doi.org/10.1007/s11099-015-0167-5

Grodetskaya T.A., Fedorova O.A., Evlakov P.M., Baranov O.Yu., Zakharova O.V., Gusev A.A. Effect of copper oxide and silver nanoparticles on the development of tolerance to Alternaria alternata in poplar in vitro clones. Nanobiotechnol. Rep., 2021, vol. 16, no. 2, pp. 231-238.https://doi.org/10.1134/S2635167621020063

Van N.L., Ma C., Shang J., Rui Y., Liu S., Xing B. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere, 2016, vol. 144, pp. 661-670. https://doi.org/10.1016/j.chemosphere.2015.09.028

Liu C., Yu Y., Liu H., Xin H. Effect of different copper oxide particles on cell division and related genes of soybean roots. Plant Physiol. Biochem., 2021, vol. 163, pp. 205-214.https://doi.org/10.1016/j.plaphy.2021.03.051

López-Luna J., Nopal-Hormiga Y., López-Sánchez L., Mtz-Enriquez A.I., Pariona N. Effect of methods application of copper nanoparticles in the growth of avocado plants. Sci. Total Environ., 2023, vol. 880, 163341. https://doi.org/10.1016/j.scitotenv.2023.163341

Lv P., Zhu L., Yu Y., Wang W., Liu G., Lu H. Effect of NaOH concentration on antibacterial activities of Cu nanoparticles and the antibacterial mechanism. Mater. Sci. Eng. C. Mater. Biol. Appl., 2020, vol. 110, 110669. https://doi.org/10.1016/j.msec.2020.110669

Guzman M., Arcos M., Dille J., Rousse C., Godet S., Malet L. Effect of the concentration and the type of dispersant on the synthesis of copper oxide nanoparticles and their potential antimicrobial applications. ACS Omega, 2021, vol. 6, no. 29, pp. 18576-18590. https://doi.org/10.1021/acsomega.1c00818

Ermini M.L., Voliani V. Antimicrobial nano-agents: The copper age. ACS Nano, 2021, vol. 15, no. 4, pp. 6008-6029. https://doi.org/10.1021/acsnano.0c10756

Fargašová A. Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant, Soil and Environment, 2004, vol. 50, no. 1, pp. 33-38.

Feigl G. The impact of copper oxide nanoparticles on plant growth: A comprehensive review, J. Plant Interact., 2023, vol. 18, no. 1, 2243098. https://doi.org/10.1080/17429145.2023.2243098

López-Vargas E.R., Ortega-Ortíz H., Cadenas-Pliego G., de Alba Romenus K., de la Fuente M. C., Benavides-Mendoza A., Juárez-Maldonado A. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl. Sci., 2018, vol. 8, 1020.https://doi.org/10.3390/app8071020

Nekoukhou M., Fallah S., Pokhrel L.R., Abbasi-Surki A., Rostamnejadi A. Foliar enrichment of copper oxide nanoparticles promotes biomass, photosynthetic pigments, and commercially valuable secondary metabolites and essential oils in dragonhead (Dracocephalum moldavica L.) under semi-arid conditions. Sci. Total Environ., 2023, vol. 863, 160920. https://doi.org/10.1016/j.scitotenv.2022.160920

Pariona N., Mtz-Enriquez A. I., Sánchez-Rangel D., Carrión G., Paraguay-Delgadoe F., RosasSaito G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Adv., 2019, vol. 9, no. 33, pp. 18835-18843. https://doi.org/10.1039/c9ra03110c

Noman M., Shahid M., Ahmed T., Tahir M., Naqqash T., Muhammad S., Song F., Abid H. M. A., Aslam Z. Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol. Environ. Saf., 2020, vol. 192, 110303.https://doi.org/10.1016/j.ecoenv.2020.110303

Gross E.L. Plastocyanin: Structure and function. Photosynth. Res., 1993, vol. 37, pp. 103-116.https://doi.org/10.1007/BF02187469

Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol., 2014, vol. 7, pp. 133-141. https://doi.org/10.1007/s12154-014-0113-1

Hashim A., Agool I. R., Kadhim K. J. Modern developments in polymer nanocomposites for antibacterial and antimicrobial applications: A review. J. Bionanosci., 2018, vol. 12, no. 5, pp. 608-613. https://doi.org/10.1166/jbns.2018.1580

Hopkins W.G., Huner N.P.A. Introduction to plant physiology. New York, J. Wiley&Sons, 2008, 528 p.

Giannousi K., Lafazanis K., Arvanitidis J., Pantazaki A., Dendrinou-Samara C. Hydrothermal synthesis of copper based nanoparticles: Antimicrobial screening and interaction with DNA. J. Inorgan. Biochem., 2014, vol. 133, pp. 24-32. https://doi.org/10.1016/j.jinorgbio.2013.12.009

Grodetskaya T.A., Evlakov P.M., Fedorova O.A., Mikhin V.I., Zakharova O.V., Kolesnikov E.A., Evtushenko N.A., Gusev A.A. Influence of copper oxide nanoparticles on gene expression of birch clones in vitro under stress caused by phytopathogens. Nanomaterials (Basel), 2022, vol. 12, no. 5, 864. https://doi.org/10.3390/nano12050864

Reed B.M., Mentzer J., Tanprasert P., Yu X. Internal bacterial contamination of micropropagated hazelnut: identification and antibiotic treatment. Plant Cell, Tissue and Organ Culture, 1998, vol. 52, pp. 67-70. https://doi.org/10.1007/978-94-015-8951-2_20

Abdelkader M., Geioushy R.A., Fouad O.A., Khaled A.G.A., Voronina L.P. Investigation the activities of photosynthetic pigments, antioxidant enzymes and inducing genotoxicity of cucumber seedling exposed to copper oxides nanoparticles stress. Scientia Horticulturae, 2022, vol. 305, 111364. https://doi.org/10.1016/j.scienta.2022.111364

Kasana R.C., Panwar N.R., Kaul R.K. Biosynthesis and effects of copper nanoparticles on plants. Environ. Chem. Lett., 2017, vol. 15, pp. 233-240. https://doi.org/10.1007/s10311-017-0615-5

Maithreyee M.N., Gowda R. Influence of nanoparticles in enhancing seed quality of aged seeds. Mysore J. Agric. Sci., 2015, vol. 49, no. 2, pp. 310-313.

Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol., 2017, vol. 15, no. 1, з. 65.https://doi.org/10.1186/s12951-017-0308-z

Mulder E.G. Mineral nutrition in relation to the biochemistry and physiology of potatoes. Plant and Soil, 1949, vol. 2, pp. 59-121. https://doi.org/10.1007/BF01344148

Oliveira H.C., Seabra A.B., Kondak S., Adedokun O.P., Kolbert Z. Multilevel approach to plant–nanomaterial relationships: from cells to living ecosystems. J. Experim. Botany, 2023, vol. 74, no. 12, pp. 3406-3424. https://doi.org/10.1093/jxb/erad107

Paterson T.E., Bari A., Bullock A.J., Turner R., Montalbano G., Fiorilli S., Vitale-Brovarone C., MacNeil S., Shepherd J. Multifunctional copper-containing mesoporous glass nanoparticles as antibacterial and proangiogenic agents for chronic wounds. Front. Bioeng. Biotechnol., 2020, vol. 8.https://doi.org/10.3389/fbioe.2020.00246

Nagaonkar D., Shende S., Rai M. Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium. Biotechnol. Prog., 2015. vol. 31, no. 2, pp. 557-565.https://doi.org/10.1002/btpr.2040

Wang X., Xie H., Wang P., Yin H. Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root. Materials, 2023, vol. 16, 3097. https://doi.org/10.3390/ma16083097

Bundschuh M., Filser J., Ludermald S., McKee M., Metreveli G., Shaumann G., Schultz R., Wagner S. Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Europe, 2018, vol. 30, 6. https://doi.org/10.1186/s12302-018-0132-6

Jessop I.A., Pérez Y.P., Jachura A., Nuñez H., Saldías C., Isaacs M., Tundidor-Camba A., Terraza C.A., Araya-Durán I., Camarada M.B., Cárcamo-Vega J.J. New hybrid copper nanoparticles/conjugated polyelectrolyte composite with antibacterial activity. Polymers, 2021, vol. 13, no. 3, 401. https://doi.org/10.3390/polym13030401

Peña M.M.O., Lee J., Thiele D.J. A delicate balance: Homeostatic control of copper uptake and distribution. J. Nutr., 1999, vol. 129, no. 7, pp. 1251-1260. https://doi.org/10.1093/jn/129.7.1251

El-Batal A.I., El-Sayyad G.S., Mosallam F.M., Fathy R.M. Penicillium chrysogenum-mediated mycogenic synthesis of copper oxide nanoparticles using gamma rays for in vitro antimicrobial activity against some plant pathogens. J. Cluster Sci., 2020, vol. 31, pp. 79-90. https://doi.org/10.1007/s10876-019-01619-3

Martins P.M.M., Merfa M.V., Takita M.A., De Souza A.A. Persistence in phytopathogenic bacteria: Do we know enough? Frontiers in Microbiology, 2018, vol. 9, 1099. https://doi.org/10.3389/fmicb.2018.01099

Mohamed H.I., Sajyan T.K., Shaalan R., Bejjani R., Sassine Y.N., Basite A. Plant-mediated copper nanoparticles for agri-ecosystem applications. Chapter 4. Nanobiotechnology for Plant Protection, 2022, pp. 79–120. https://doi.org/10.1016/B978-0-12-823575-1.00025-1

Pollock K., Barfield D.G., Shields R. The toxicity of antibiotics to plant cell cultures. Plant Cell Rep., 1983, vol. 2, no. 1, pp. 36-39. https://doi.org/10.1007/BF00269232

Pontel L., Checa S., Soncini F. Bacterial сopper resistance and virulence. Bacteria-metal interactions. Switzerland : Springer, 2015, pp. 1-19. https://doi.org/10.1007/978-3-319-18570-5_1

Hafeez A., Razzaq A., Mahmood T., Jhanzab H.M. Potential of copper nanoparticles to increase growth and yield of wheat. J. Nanosci. Adv. Tech., 2015, vol. 1, no. 1, pp. 6-11.https://doi.org/10.24218/JNAT.2015.02

Bytešníková Z., Pečenka J., Tekielska D., Kiss T., Švec P., Ridošková A., Bezdička P., Pekárková J., Eichmeier A., Pokluda R., Adam V., Richtera L. Reduced graphene oxide-based nanometalcomposite containing copper and silver nanoparticles protect tomato and pepper against Xanthomonas euvesicatoria infection. Chem. Biol. Technol. Agric., 2022, vol. 9, 84.https://doi.org/10.1186/s40538-022-00347-7

Sereena M.C., Sebastian D. Cloning, expression and characterization of the anticancer protein azurin from an indigenous strain Pseudomonas aeruginosa SSj. Int. J. Peptide Res. Therap., 2020., vol. 26, pp. 1223-1230. https://doi.org/10.1007/s10989-019-09924-1

Shah V., Belozerova I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut., 2009, vol. 197, no. 1, pp. 143-148.https://doi.org/10.1007/s11270-008-9797-6

Siddiqi K.S., Husen A. Current status of plant metabolite-based fabrication of copper/copper oxide nanoparticles and their applications: a review. Biomater. Res., 2020, vol. 24, no. 11.https://doi.org/10.1186/s40824-020-00188-1

Ameh T., Gibb M., Stevens D., Pradhan S.H., Braswell E., Sayes C.M. Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells. Nanomaterials (Basel), 2022, vol. 12, no. 14, 2402. https://doi.org/10.3390/nano12142402

Churilov D., Churilova V., Stepanova I., Polischuk S., Gusev A., Zakharova O., Arapov I., Churilov G. Size-dependent biological effects of copper nanopowders on mustard seedlings. IOP Conf. Ser. : Earth Environ. Sci., 2019, vol. 392, 012008. https://doi.org/10.1088/1755-1315/392/1/012008

Sobiczewski P., Iakimova E. T. Plant and human pathogenic bacteria exchanging their primary host environments. J. Horticult. Res., 2022, vol. 30, pp. 11-30. https://doi.org/10.2478/johr-2022-0009

Solioz M., Odermatt A., Krapf R. Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett., 1994, vol. 346, pp. 44-47. https://doi.org/10.1016/0014-5793(94)00316-5

Erci F., Cakir-Koc R., Yontem M., Torlak E. Synthesis of biologically active copper oxide nanoparticles as promising novel antibacterial-antibiofilm agents. Prep. Biochem. Biotechnol., 2020, vol. 50, no. 6, pp. 538-548. https://doi.org/10.1080/10826068.2019.1711393

Lopez-Lima D., Mtz-Enriquez A.I., Carrión G., Basurto-Cereceda S., Pariona N. The bifunctional role of copper nanoparticles in tomato: Effective treatment for Fusarium wilt and plant growth promoter. Scientia Horticulturae, 2021, vol. 277, 109810. https://doi.org/10.1016/j.scienta.2020.109810

Zakharova O., Kolesnikov E., Shatrova N., Gusev A. The effects of CuO nanoparticles on wheat seeds and seedlings and Alternaria solani fungi: in vitro study. IOP Conf. Ser. : Earth Environ. Sci., 2019, vol. 226, 012036. https://doi.org/10.1088/1755-1315/226/1/012036

Anwaar S., Maqbool Q., Jabeen N., Nazar M., Abbas F., Nawaz B., Hussain T., Hussain S. The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L. Front. Plant. Sci., 2016, vol. 7, 1330. https://doi.org/10.3389/fpls.2016.01330

Panyuta O., Belava V., Fomaidi S., Kalinichenko O., Volkogon M., Taran N. The effect of pre-sowing seed treatment with metal nanoparticles on the formation of the defensive reaction of wheat seedlings infected with the eyespot causal agent. Nanoscale Res. Lett., 2016, vol. 11, no. 1, 92.https://doi.org/10.1186/s11671-016-1305-0

Belava V.N., Panyuta O.O., Yakovleva G.M., Pysmenna Y.M., Volkogon M.V. The effect of silver and copper nanoparticles on the wheat-Pseudocercosporella herpotrichoides pathosystem. Nanoscale Res. Lett., 2017, vol. 12, no. 1, 250. https://doi.org/10.1186/s11671-017-2028-6

Bhattacharjee R., Kumar L., Mukerjee N., Anand U., Dhasmana A., Preetam S., Bhaumik S., Sihi S., Pal S., Khare T., Chattopadhyay S., El-Zahaby S.A., Alexiou A., Koshy E.P., Kumar V., Malik S., Dey A., Pro´ckow J. The emergence of metal oxide nanoparticles (NPs) as a phytomedicine: A two-facet role in plant growth, nano-toxicity an anti-phyto-microbial activity. Biomed. Pharmacother., 2022, vol. 155, 113658. https://doi.org/10.1016/j.biopha.2022.113658

Fedorova O.A., Grodetskaya T.A., Evtushenko N., Evlakov P.M., Gusev A.A., Zakharova O.V. The impact of copper oxide and silver nanoparticles on woody plants obtained by in vitro method. IOP Conf. Ser. : Earth Environ. Sci., 2021, vol. 875, 012048.https://doi.org/10.1088/1755-1315/875/1/012048

Talankova-Sereda T.E., Liapina K.V., Shkopinskij E.A., Ustinov A.I., Kovalyova A.V., Dulnev P.G., Kucenko N.I. The influence of Cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro. Nanosci. Nanoeng., 2016, vol. 4, no. 2, pp. 31-39.https://doi.org/10.13189/nn.2016.040201

Yruela I. Copper in plants: acquisition, transport and interactions. Funct. Plant Biol., 2009, vol. 36, no. 5, pp. 409-430. https://doi.org/10.1071/FP08288

Zakharova O.V., Gusev A.A. Photocatalytically active zinc oxide and titanium dioxide nanoparticles in clonal micropropagation of plants: Prospects. Nanotechnologies in Russia, 2019, vol. 14, pp. 311-324. https://doi.org/10.1134/S1995078019040141


Full text (russian)