«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2023. Vol 45

In Silico Analysis of the Structural Diversity of CRISPR-Cas Systems in Genomes of Salmonella enterica and Phage Species Detected by Them

Author(s)
A. Yu. Borisenko, N. A. Arefieva, Yu. P. Dzhioev, S. V. Erdyneev, Yu. S. Bukin, G. A. Teterina, A. A. Pristavka, G. V. Yurinova, D. A. Antipin, K. B. Kahiani, A. E. Makarova, V. P. Salovarova, V. I. Zlobin
Abstract
The problem of resistance of pathogenic bacteria to antibiotics has become global and, therefore, there is renewed interest in the use of bacteriophages. However, bacteria also have phage defense structures, the CRISPR/Cas system. Therefore, the analysis of the structural diversity of CRISPR-Cas systems in the genomes of pathogenic bacteria and phages is an important fundamental and applied direction. The aim. Investigation of the diversity of structures of CRISPR/Cas systems in the genomes of S. enterica strains from the NCBI database using bioinformatics programs and assessment of the possibilities to identify phage protection of strains through spacers in CRISPR cassettes. The studies were carried out with the genomes of 449 S. enterica strains from the NCBI database. A number of bioinformation software methods were used: 1) MacSyFinder, 2) CRISPR Interactive database, 3) CRISPR R Tool, 4) CRISPI: a CRISPR Interactive database, 5) CRISPRFinder. Screening of phages through spacers CRISPR cassettes was used: 1) CRISPRTarget, 2) Mycobacteriophage Database, 3) Phages database. In the genomes of the studied strains of S. enterica, one type of CRISPR/Cas system, I-E, was identified. Protein genes were present in each locus of the CRISPR/Cas systems: Cas1_0_I-E_7, Cas2_0_I-E_8, Cas3_0_I_1, Cas5_0_I-E_5, Cas6_0_I-E_6, Cas7_0_I-E_4, Cse1_0_I-E_2, Cse2_0_I-E_3. The number of cassettes was from 1 to 3, and the spacers in them varied from 8 to 30. Repeats in CRISPR cassettes varied from 27 to 29 base pairs. The identified phages belonged to bacteria of the genera: Salmonella – 60%, Escherichia – 18%, Enterobacter – 9%, Salmonella – 8%, and Staphylococcus and Enterococcus were up to 5%. The obtained data on the diversity of CRISPR/Cas systems in the genomes of the studied S. enterica strains demonstrate their unique structures. The homogeneity of CRISPR/Cas systems and the rooting of CAS types I-E in genomes can be explained by their participation in the interspecific transmission of these CRISPR systems.
About the Authors

Borisenko Andrey Yurievich, Candidate of Science (Biology), Senior Lecturer, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., Irkutsk, 664003, Russian Federation, e-mail: 89500720225@mail.ru

Arefieva Nadezhda Aleksandrovna, Junior Research Scientist, Scientific Сentre for Family Health and Human Reproduction Problems, 16, Timiryazev st., Irkutsk, 664003, Russian Federation, Junior Research Scientist, Irkutsk Anti-Plague Research Institute of Siberia and Far East of Rospotrebnadzor, 78, Trilisser st., Irkutsk. 664047, Russian Federation, Research Assistant, Irkutsk State Medical University, 1, Krasnogo Vosstaniya, Irkutsk, 664003, Russian Federation, Postgraduate, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: arefieva.n4@gmail.com

Dzhioev Yuri Pavlovich, Candidate of Science (Biology), Leading Research Scientist, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., Irkutsk, 664003, Russian Federation, e-mail: alanir07@mail.ru

Erdyneev Sergey Viktorovich, Postgraduate Student, Irkutsk State Medical University, 1, Krasnoe Vosstanie st., Irkutsk, 664003, Russian Federation, Research Assistant, Irkutsk Anti-Plague Research Institute of Siberia and Far East of Rospotrebnadzor, 78, Trilisser st., Irkutsk. 664047, Russian Federation, e-mail: orry230@yandex.ru

Bukin Yuri Sergeevich, Candidate of Science (Biology), Senior Research Scientist, Limnological Institute SB RAS, 3, Ulaanbaatar st., Irkutsk, 664033, Russian Federation, Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: bukinyura@mail.ru

Teterina Galina Aleksandrovna, Senior Lecturer, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: galina.teterina.91@mail.ru

Pristavka Aleksey Aleksandrovich, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: pristavk@gmail.com

Yurinova Galina Valerievna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: yurinova@yandex.ru

Antipin Dmitry Andreevich, Postgraduate, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., Irkutsk, 664003, Russian Federation, e-mail: kagkkris12@gmail.com

Kakhiani Kistina Besikovna, Student, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., Irkutsk, 664003, Russian Federation, kagkkris12@gmail.com

Makarova Angelina Eduardovna, Student, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., Irkutsk, 664003, Russian Federation, e-mail: eamak18@mail.ru

Salovarova Valentina Petrovna, Doctor of Sciences (Biology), Professor, Head of Chair, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: vsalovarova@gmail.com

Zlobin Vladimir Igorevich, Doctor of Sciences (Medicine), Professor, Academician RAS, Irkutsk State Medical University, 11, Krasnogo Vosstaniya st., Irkutsk, 664003, Russian Federation, GamaleyaNational Research Center for Epidemiology and Microbiology, 18, Gamaleya st., Moscow, 123098, Russian Federation, e-mail: vizlobin@mail.ru

For citation
Borisenko A.Yu., Arefieva N.A., Dzhioev Yu.P., Erdyneev S.V., Bukin Yu.S., Teterina G.A., Pristavka A.A., Yurinova G.V., Antipin D.A., Kahiani K.B., Makarova A.E., Salovarova V.P., Zlobin V.I. In Silico Analysis of the Structural Diversity of CRISPR-Cas Systems in Genomes of Salmonella enterica and Phage Species Detected by Them. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2023, vol. 45, pp. 3-20. https://doi.org/10.26516/2073-3372.2023.45.3 (in Russian)
Keywords
Salmonella enterica, in silico approaches, genomics and bioinformatics software, CRISPR/Cas system, spacers, repeats, protospacers, phages.
UDC
579.61:616-078+575.112
DOI
https://doi.org/10.26516/2073-3372.2023.45.3
References

Aref'eva N.A., Dzhioev Yu.P., Borisenko A.Yu., Chemerilova V.I., Vyatchina O.F., Sekerina O.A., Stepanenko L.A., Markova Yu.A., Yurinova G.V., Salovarova V.P., Pristavka A.A., Kuz'minova V.A., Reva O.N., Zlobin V.I. Bioinformatsionnyi poisk struktur CRISPR/Cas-sistemy v genome plazmidy PCT281 shtamma Bacillus thuringiensis SUBSP. CHINENSIS CT-43. Acta Bio-medica Scientifica, 2018, vol. 3, no. 5, pp. 33-38.https://doi.org/10.29413/ABS.2018-3.5.5 (in Russian)

Borisenko A.Yu., Dzhioev Yu.P., Peretolchina N.P., Stepanenko L.A., Kuzminova V.A., Kokorina L.A., Zemlyanskaya Yu.M., Arefieva N.A., Reva O.N., Wang I., Ku C., Zlobin V.I. Bioinformatsionnyi poisk i analiz struktur CRISPR/Cas-sistem v genome shtamma Staphylococsus aureus i otsenka profilei fagovykh ras, detektiruemykh cherez CRISPR-kassetu bakterii [Bioinformation search and analysis of the structures of CRISPR/Cas systems in the genome of the Staphylococcus aureus strain and assessment of the profiles of phage races detected through the bacterial CRISPR cassette]. Acta Biomedica Scientifica, 2018, vol. 3, no. 5, pp. 49-53.https://doi.org/10.29413/ABS.2018-3.5.7 (in Russian)

Alikhan N.F., Zhou Z., Sergeant M.J., Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet., 2018, vol. 14, no. 4, e1007261. https://doi.org/10.1371/journal.pgen.1007261

Peretolchina N.P., Klimov V.T., Voskresenskaya E.A., Kokorina G.I., Bogumil'chik E.A., Trukhachev A.L., Igumnova S.V., Dzhioev Yu.P., Zlobin V.I. Lokusnyi sostav CRISPR-Cas sistemy Yersinia pseudotuberculosis razlichnykh geneticheskikh variantov [Locus composition of the CRISPR-Cas system of Yersinia pseudotuberculosis of various genetic variants]. Epidemiology and vaccine prevention, 2020, vol. 19, no. 2, pp. 31-39. https://doi.org/10.31631/2073-3046-2020-19-2-31-39 (in Russian)

Dzhioev Yu.P., Borisenko A.Yu., Stepanenko L.A., Zemlyanskaya Yu.M., Peretolchina N.P., Kuz'minova V.A., Aref'eva N.A., Portnaya Ya.A., Karnoukhova O.G., Kogan G.Yu., Zlobin V.I. Otsenka ustoichivosti shtammov Staphylococcus aureus s vyyavlennymi strukturami CRISPR/Cassistem k razlichnym fagovym rasam [Assessment of the resistance of Staphylococcus aureus strains with identified CRISPR/Cas-system structures to various phage races]. Aktualnye problemy nauki Pribaikal'ya [Current problems of science in the Baikal region]. Irkutsk, Irkutsk St. Univ. Publ., 2020, pp. 85-90. (in Russian)

Ivanova E.I., Dzhioev Yu.P., Borisenko A.Yu., Peretolchina N.P., Stepanenko L.A., Paramonov A.I., Grigorova E.V., Nemchenko U.M., Tunik T.V., Kungurtseva E.A. Poisk i analiz CRISPRcas sistemy v shtamme Escherichia coli HS i detektiruemykh speiserami ego CRISPR-kassety fagovykh ras metodami bioinformatiki [Search and analysis of the CRISPR-cas system in the Escherichia coli HS strain and phage races detected by its CRISPR-cassette spacers using bioinformatics methods]. Bull. Russ. St. Med. Univ., 2018, no. 2, pp. 28-34.https://doi.org/10.24075/vrgmu.2018.019 (in Russian)

Stepanenko L.A., Dzhioev Yu.P., Zlobin V.I., Borisenko A.Yu., Salovarova V.P., Aref'eva N.A., Seminskii I.Zh., Malov I.V. Razrabotka podkhodov skrininga vysokospetsifichnykh bakteriofagov na osnove bioinformatsionnogo analiza struktur CRISPR-Cas sistem Corynebacterium diphtheria [Development of approaches for screening highly specific bacteriophages based on bioinformatic analysis of the structures of CRISPR-Cas systems of Corynebacterium diphtheria]. Proceedings of Universities. Applied Chemistry and Biotechnology, 2021, vol.11, no. 2 (37), pp. 216-227.https://doi.org/10.21285/2227-2925-2021-11-2-216-227 (in Russian)

Peretolchina N.P., Borisenko A.Yu., Dzhioev Yu.P., Zlobin V.I. Sravnitelnyi analiz CRISPRsistem shtammov Yersinia pseudotuberculosis IP32953 i IP31758 [Comparative analysis of CRISPR systems of Yersinia pseudotuberculosis strains IP32953 and IP31758]. Acta Biomedica Scientifica, 2018, vol. 3, no. 5, pp. 54-59. https://doi.org/10.29413/ABS.2018-3.5.8

Borisenko A.Yu., Dzhioev Yu.P., Stepanenko L.A., Zemlyanskaya Yu.M., Peretolchina N.P., Aref'eva N.A., Bukin Yu.S., Rakova E.B., Kokorina L.A., Portnaya Ya.A., Vyatchina O.F., Martynova A.S., Frantseva L.A., Vasil'ev V.V., Teterina G.A., Salovarova V.P., Simonova E.V., Zlobin V.I. Struktury CRISPR/Cas-sistemy v genome shtamma Staphylococcus aureus ST228 i fagovykh ras, detektiruemykh metodami bioinformatiki [Structures of the CRISPR/Cas system in the genome of Staphylococcus aureus strain ST228 and phage races detected by bioinformatics methods]. Bull. Irkutsk St. Univ. Ser. Biol. Ekol., 2020, vol. 31, pp. 3-18.https://doi.org/10.26516/2073-3372.2020.31.3 (in Russian)

Guevara Y.A.S., Santos M.H.C., Gomes F.I.R., Sheheryar, Mesquita F.P., Souza P.F.N. A historical, economic, and technical-scientific approach to the current crisis in the development of antibacterial drugs: Promising role of antibacterial peptides in this scenario. Microb. Pathog., 2023, vol. 179, 106108. https://doi.org/10.1016/j.micpath.2023.106108

Kariuki S., Gordon M.A., Feasey N., Parry C.M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine, 2015, vol. 33, suppl. 3, pp. C21-C29.https://doi.org/10.1016/j.vaccine.2015.03.102

Shariat N., Timme R.E., Pettengill J.B., Barrangou R., Dudley E.G. Characterization and evolution of Salmonella CRISPR-Cas systems. Microbiology (Reading), 2015, no. 161, pt. 2, pp. 374-386.https://doi.org/10.1099/mic.0.000005.43

Cooper L.A., Stringer A.M., Wade J.T. Determining the Specificity of Cascade Binding, Interference, and Primed Adaptation In Vivo in the Escherichia coli Type I-E CRISPR-Cas System. mBio, 2018, vol. 9, no. 2, p. e02100-17. https://doi.org/10.1128/mBio.02100-17

Anmoy A.M., Saha C., Sajib M.S.I., Saha S., Komurian-Pradel F., van Belkum A., Louwen R., Saha S.K., Endtz H.P. CRISPR-Cas Diversity in Clinical Salmonella enterica Serovar Typhi Isolates from South Asian Countries. Genes (Basel). 2020, vol. 11(11), p. 1365. https://doi.org/10.3390/genes11111365

Biswas A., Gagnon J.N., Brouns S.J., Fineran P.C., Brown C.M. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013, vol. 10, is. 5, pp. 817-827.https://doi.org/10.4161/rna.24046

Zhang J., Wei L., Kelly P., Freeman M., Jaegerson K., Gong J., Xu B., Pan Zh., Xu Ch., Wang Ch. Detection of Salmonella spp. using a generic and differential FRET-PCR. PLoS One, 2013, vol. 8(10). e76053. https://doi.org/10.1371/journal.pone.0076053

Pons B.J., van Houte S., Westra E.R., Chevallerea A. Ecology and evolution of phages encoding anti-CRISPR proteins. J. Mol. Biol., 2023, vol. 435, is. 7, 167974. https://doi.org/10.1016/j.jmb.2023.167974

Qin S., Liu Y., Chen Y., Hu J., Xiao W., Tang X. Engineered Bacteriophages Containing AntiCRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa. Microbiol. Spectr., 2022, vol. 10, no. 5. e0160222. https://doi.org/10.1128/spectrum.01602-22

Gogokhia L., Buhrke K., Bell R., Hoffman B., Brown D.G., Hanke-Gogokhia C., Ajami N.J., Wong M.C., Ghazaryan A., Valentine J.F. Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis. Cell Host Microbe, 2019, vol. 25, is. 2, pp. 285–299.https://doi.org/10.1016/j.chom.2019.01.008

Gal-Mor O. Persistent Infection and Long-Term Carriage of Typhoidal and Nontyphoidal Salmonellae. Clin. Microbiol. Rev., 2018, vol. 32, no. 1, e00088-18. https://doi.org/10.1128/CMR.00088-18

Seif Y., Kavvas E., Lachance J-Ch., Yurkovich J.T., Nuccio S-P., Fang X. Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits. Nat. Commun., 2018, vol. 9(1), 3771. https://doi.org/10.1038/s41467-018-06112-5

Zhou Z., Alikhan N.F., Sergeant M.J., Luhmann N., Vaz C., Francisco A.P., Carriço J.A., Achtman M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. BioRxiv, 2017. https://doi.org/10.1101/216788

Gutiérrez B., Domingo-Calap P. Phage Therapy in Gastrointestinal Diseases. Microorganisms, 2020, vol. 8, is. 9. https://doi.org/10.3390/microorganisms8091420 Hashemi A. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology. Curr. Gene Ther., 2018, vol. 18, is. 2, pp. 115-124. https://doi.org/10.2174/1566523218666180221110627

Pawluk A., Staals R.H., Taylor C., Watson B.N., Saha S., Fineran P. Inactivation of CRISPRCas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol., 2016, vol. 1, 16085. https://doi.org/10.1038/nmicrobiol.2016.85

Shane A.L., Mody R.K., Crump J.A., Tarr Ph.I., Steiner Th.S., Kotloff K. Infectious Diseases Society of America Clinical Practice Guidelines for the Diagnosis and Management of Infectious Diarrhea. Clin. Infect. Dis., 2017, vol. 65, no. 12, pp. e45-e80. https://doi.org/10.1093/cid/cix669

Knodler L.A., Elfenbein J.R. Salmonella enterica. Trends Microbiol., 2020, vol. 28, is. 1, p. 83. https://doi.org/10.1016/j.tim.2019.10.014

McQuiston J.R., Herrera-Leon S., Wertheim B.C., Doyle J., Fields P.I., Tauxe R.V., Logsdon Jr. J.M. Molecular phylogeny of the Salmonellae: relationships among Salmonella species and subspecies determined from four housekeeping genes and evidence of lateral gene transfer events. J. Bacteriol., 2008, vol. 190, no. 21, pp. 7060-7067. https://doi.org/10.1128/JB.01552-07

Majewska J., Beta W., Lecion D., Hodyra-Stefaniak K., Klopot A., Kazmierczak Z. Oral Application of T4 Phage Induces Weak Antibody Production in the Gut and in the Blood. Viruses, 2015, vol. 7, is. 8, pp. 4783-4799. https://doi.org/10.3390/v7082845

Ceballos-Garzon A., Muñoz A.B., Plata J.D., Sanchez-Quitian Z.A., Ramos-Vivas J. Phages, anti-CRISPR proteins, and drug-resistant bacteria: what do we know about this triad? Pathog. Dis., 2022, vol. 80, is. 1. ftac039. https://doi.org/10.1093/femspd/ftac039

Porwollik S., McClelland M. Lateral gene transfer in Salmonella. Microbes Infect., 2003, vol. 5, is. 1, pp. 977-989. https:doi.org/10.1016/S1286-4579(03)00186-2

Sahu B., Singh S.D., Behera B.K., Panda S.K., Das A., Parida P.K.J. Rapid detection of Salmonella contamination in seafoods using multiplex PCR. Braz. Microbiol., 2019, vol. 50, pp. 807-816. https://doi.org/10.1007/s42770-019-00072-8

Sabino J., Hirten R.P., Colombel J.F. Bacteriophages in gastroenterology-from biology to clinical applications. Aliment. Pharmacol. Ther., 2020, vol. 51, is. 1, pp. 53-63. https://doi.org/10.1111/apt.15557

Issenhuth-Jeanjean S., Roggentin P., Mikoleit M., Guibourdenche M., de Pinna E., Nair S., Fields P.I., Weill F.X. Supplement 2008-2010 (no. 48) to the White-Kauffmann-Le Minor scheme. Res. Microbiol., 2014 vol. 165, is. 7, pp. 526-530. https://doi.org/10.1016/j.resmic.2014.07.004

Sharma N., Das A., Raja P., Marathe S.A. The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium. Microbiol. Spectr., 2022, vol. 10, no. 3. e0020222. https://doi.org/10.1128/spectrum.00202-22

Ferrari R.G., Rosario D.K.A., Cunha-Neto A., Mano S.B., Figueiredo E.E.S., Conte-Junior C.A. Worldwide Epidemiology of Salmonella Serovars in Animal-Based Foods: a Metaanalysis. Appl. Environ. Microbiol., 2019, vol. 85, no. 14. https://doi.org/10.1128/AEM.00591-19


Full text (russian)