«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2021. Vol 37

New and Modified Biofuel Cell Designs

Author(s)
G. O. Zhdanova
Abstract
A description of new and modified layouts of biofuel cells (BFC) is given: two-chamber cells with a proton-exchange membrane and single-chamber membraneless structures. BFCs have been proposed that allow repeatedly, without violating sterility and anaerobic conditions in the anode chamber, to take samples for chemical and biological analysis. They are also suitable for adding the necessary components without interrupting the BFC operation. For continuous monitoring of chemical and microbiological processes occurring in the anode space, a modification of the BFC has been proposed, which has an increased volume of the anode chamber and additional holes for placing Red-Ox and pH electrodes. The resulting constructs made it possible to study the dynamics of pH, redox potentials, COD of model wastewater, substrate concentrations, and an increase in the number of cells of electrogenic microorganisms. Another variant of the BFC layout makes it possible to collect H2 generated at the cathode electrode. For this, it is proposed to use a water-oil seal. It is located in the immediate vicinity of the chamber in which gassing is taking place – on the lid that clogs the BFC chamber. To simplify, reduce the cost and increase the availability of BFC technology for the manufacture of cells, a quickly collapsible two-chamber design is proposed. It is assembled from standard elements readily available and widely used in plumbing and sewerage systems. The proton exchange membrane is the most expensive component of classical BFCs. Therefore, the design of a single-chamber BFC from inexpensive parts for sanitary purposes without a proton-exchange membrane has been proposed and tested. This significantly reduces the cost of technology. It has been shown that generally available commercial microbiological preparations for composting, cesspools and septic tanks, biofertilizers and individual strains of micro-organisms work well as bioagents in the described BFCs.
About the Authors
Zhdanova Galina Olegovna, Lead Engineer, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: zhdanova86@yandex.ru
For citation
Zhdanova G.O. Development and modification of biofuel cell designs. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2021, vol. 37, pp. 70-88. https://doi.org/10.26516/2073-3372.2021.37.70 (in Russian)
Keywords
biofuel cell, electricity generation, biotechnology, two-chamber BFC, membrane-less BFC.
UDC
573.6
DOI
https://doi.org/10.26516/2073-3372.2021.37.70
References

Kalashnikova O.B., Kashevskii A.V., Vardanyan N.S., Erdenechimeg D., Zhdanova G.O., Topchiy I.A., Ponamoreva O.N., Vyatchina O.F., Stom D.I. Atsidofil'nye khemolito-trofnye mikroorganizmy: perspektivy primeneniya v biogidrometallurgii i v mikrobnykh toplivnykh elementakh [Acidophilic chemolithotrophic microorganisms: prospects for use in bio-hydrometallurgy and microbial fuel cells]. Izvestiya Vuzov. Prikladnaya Khimiya i Bio-tekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology], 2021, vol. 11, no. 1 pp. 34-52. (in Russian).https://doi.org/10.21285/2227-2925-2021-11-1-34-52

Korkina O.S., Sarapulova G.I., Zhdanova G.O., Gorbunova Yu.O., Ivanchikov E.A., Stom D.I., Beshkov V.N. Mikrobiologicheskii preparat «Doktor Robik 109» kak bioagent dlya polucheniya elektricheskogo toka v MTE pri dobavlenii zhirov [Microbiological preparation "Doctor Robik 109" as a bioagent for generating electric current in MFC with the addition of fats] Bul. Irkutsk St. Univ. Ser. Biol. Ecol., 2019, vol. 28, pp. 17-25. (in Russian). https://doi.org/10.26516/2073-3372.2019.28.17

Simayi K.Y., Abdeshahian P., Azman N.F., Chandrasekhar K., Kalil M.S. A comprehen-sive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J., 2016, vol. 55, pp. 427-443. https://doi.org/10.1016/j.aej.2015.10.008

Pourmadadi M., Shayeh J.S., Omidi M., Yazdian F., Alebouyeh M., Tayebi L. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electro-chemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim. Acta, 2019, vol. 186, p. 787. https://doi.org/10.1007/s00604-019-3957-9

Al-Mamun A., Ahmad W., Baawain M.S., Khadem M., Dhar B.R. A review of microbial desalination cell technology: Configurations, optimization and applications. J. Clean. Prod., 2018, vol. 183, pp. 458-480. https://doi.org/10.1016/j.jclepro.2018.02.054

Stom D.I., Zhdanova G.O., Kalashnikova O.B., Bulaev A.G., Kashevskii A.V., Kupchinsky A.B., Vardanyan N.S., Ponamoreva O.N., Alferov S.V., Saksonov M.N., Chesnokova A.N., Tolstoy M.Yu. Acidophilic microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma sp. as a cathodic bioagents in a MFC. Geomicrobiol. J., 2021, vol. 38, no. 4, pp. 340-346. https://doi.org/10.1080/01490451.2020.1856980

Ali A., Audi M., Roussel Y. Natural Resources Depletion, Renewable Energy Consumption and Environmental Degradation: A Comparative Analysis of Developed and Developing. Int. J. Energy Econ., 2021, vol. 11, no. 3, pp. 251-260. https://doi.org/10.32479/ijeep.11008

Zhang Y., Lv Z., Zhou J., Xin F., Ma J., Wu H., Fang Y., Jiang M., Dong W. Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 10409-10423.https://doi.org/10.1007/s00253-018-9421-7

Mekawy E., Hegab H.M., Losic D., Saint C.P., Pant D. Applications of Graphene in Microbial Fuel Cells: The Gap between Promise and Reality. Renew. Sust. Energ. Rev., 2017, vol. 72, pp. 1389-1403. https://doi.org/10.1016/j.rser.2016.10.044

Vyatchina O.F., Stom D.I., Goel S., Xie B. Biocathode of microbial fuel cells based on nitrate-reducing strains of Pseudomonas aeruginosa. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 408, 012084. https://doi.org/10.1088/1755-1315/408/1/012084

Kuznetsov A.V., Khorina N.N., Konovalova E.Yu., Amsheev D.Yu., Ponamoreva O.N., Stom D.I. Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 808, 012038. https://doi.org/10.1088/1755-1315/808/1/012038

Jung S., Lee J., Park Y.-K., Kwon E.E. Bioelectrochemical systems for a circular bioeconomy. Bioresour. Technol., 2020, vol. 300, 122748. https://doi.org/10.1016/j.biortech.2020.122748

Zhdanova G.O., Konovalova E.Yu., Tolstoy M.Yu., Kashevsky A.V., Barbora L., Goswami P., Goel S., Fialkow V.A., Kupchinsky A.B., Stom D.I. Comparative analysis of electrogenic activity of complex microbial preparations in microbial fuel cells. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 272, 032161. https://doi.org/10.1088/1755-1315/272/3/032161

Zhang S., You J., Kennes C., Cheng Z., Ye J., Chen D., Chen J., Wang L. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chem. Engin. J., 2018, vol. 334, pp. 2625-2637. https://doi.org/10.1016/j.cej.2017.11.014

Jeuken L.J.C., Connell S.D., Nurnabi M., O'Reilly J., Henderson P.J.F., Evans S.D., Bush-by R.J. Direct Electrochemical Interaction between a Modified Gold Electrode and a Bacterial Membrane Extract. Langmuir, 2005, vol. 21, pp. 1481-1488. https://doi.org/10.1021/la047732f

Logan B.E., Rossi R., Ragab A., Saikaly P.E. Electroactive microorganisms in bioelectro-chemical systems. Rev. Microbiol., 2019, vol. 17, pp. 307-319. https://doi.org/10.1038/s41579-019-0173-x

Bose D., Kandpal V., Dhawan H., Vijay P., Gopinath M. Energy Recovery with Microbial Fuel Cells: Bioremediation and Bioelectricity. Waste Bioremediation. Energy, Environment, and Sustainability. S. Varjani, E. Gnansounou, B. Gurunathan, D. Pant, Z. Zakaria (eds). Springer, Singapore, 2018. pp 7-33. https://doi.org/10.1007/978-981-10-7413-4_2

Tian Y., Li D., Liu G., Li C., Liu J., Wu J., Liu J., Feng Y. Formate production from CO2 electroreduction in a salinity-gradient energy intensified microbial electrochemical system. Bioresour. Technol., 2021, vol. 320, part A, 124292. https://doi.org/10.1016/j.biortech.2020.124292

Glaven S. M. Bioelectrochemical systems and synthetic biology: more power, more products. Microb. Biotechnol., 2019, vol. 12, no. 5, pp. 819-823. https://doi.org/10.1111/1751-7915.13456

Kochetkova D.A., Onishchenko А.К., Kalashnikova О.B., Zhdanova G.О., Stom D.I. Intensification of work of biofuel elements of heterogeneous metal complex catalysts "Catan". 19th Int. Sci. Geoconf. SGEM 2019, 2019, vol. 19, is. 4.1, pp. 263-270

Kittl S.R., Ludwig R., Gorton L. Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes. ACS Catalysis, 2016, vol. 6, pp. 555-563. https://doi.org/10.1021/acscatal.5b01854

Konwar G.B.E., Mahanta D. Flexible Biofuel Cells: An Overview. Biofuel Cells. Inamuddin, M.I. Ahamed, R. Boddula, M. Rezakazemi (eds)., 2021. https://doi.org/10.1002/9781119725008.ch6

Marshall C.W., Ross D.E., Fichot E.B., Norman R.S., May H.D. Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate Production by Autotrophic Microbiomes. Environ. Sci. Technol., 2013, vol. 47, pp. 6023-6029. https://doi.org/10.1021/es400341b

Mateos E.R., Martínez E.J., Blanes J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sustain. Energy Rev., 2016, vol. 55, 942e956. https://doi.org/10.1016/j.rser.2015.11.029

Yuriev D.A., Zaitseva S.V., Zhdanova G.O., Tolstoy M.Yu., Barkhutova D.D., Vyatchi-na O.F., Konovalova E.Yu., Stom D.I. Microbial mat of the thermal springs Kuchiger Republic of Buryatia: species composition, biochemical properties and electrogenic activity in biofuel cell. IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 121, 022012. https://doi.org/10.1088/1755-1315/121/2/022012

Konovalova E.Yu., Barbora L., Chizhik K.I., Stom D.I. Micrococcus luteus and Serratia marcescens, as a new association of bioagents for microbial fuel cells. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 408, Sustainable and Efficient Use of Energy, Water and Natural Resources: 2nd Int. Sci. Conf., 012080. https://doi.org/10.1088/1755-1315/408/1/012080

Paquete C. M. Electroactivity across the cell wall of Gram-positive bacteria // Comput Struct Biotechnol J. 2020. Vol. 18. Р. 3796-3802. doi:10.1016/j.csbj.2020.11.021

Kuzu Ç.S., Erken E., Sert H., Koşkun Y., Şen F. Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. Int. J. Hydrog. Energy., 2016, vol. 41, pp. 3093-3101. https://doi.org/10.1016/j.ijhydene.2015.12.138

Paquete C.M. Electroactivity across the cell wall of Gram-positive bacteria. Comput. Struct. Biotechnol. J., 2020, vol. 18, pp. 3796-3802. https://doi.org/10.1016/j.csbj.2020.11.021

Guang L., Koomson D.A., Jingyu H., Ewusi-Mensah D., Miwornunyuie N. Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 3, p. 1121. https://doi.org/10.3390/ijerph17031121

Rasmussen M., Abdellaoui S., Minteer S.D. Enzymatic Biofuel Cells: 30 Years of Criti-cal Advancements. Biosens. Bioelectron., 2016, vol. 76, pp. 91-102. https://doi.org/10.1016/j.bios.2015.06.029

Olabi A.G., Wilberforce T., Sayed E.T., Elsaid K., Rezk H., Abdelkareem M.A. Recent progress of graphene based nanomaterials in bioelectrochemical systems. Sci. Total Environ., 2020, vol. 749, 141225. https://doi.org/10.1016/j.scitotenv.2020.141225

Arsdale E.V., Pitzer J., Payne G.F., Bentley W.E. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience, 2020, vol. 23, no. 9, 101545. https://doi.org/10.1016/j.isci.2020.101545

Stom D.I., Zhdanova G.O., Kashevskii A.V. New designs of biofuel cells and testing of their work. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 262, Int. Conf. on Construction, Archi-tecture and Technosphere Safety, 012219. https://doi.org/10.1088/1757-899X/262/1/012219

Jadhav D.A., Chendake A.D., Schievano A., Pant D. Suppressing methanogens and en-riching electrogens in bioelectrochemical systems. Bioresour. Technol., 2019, vol. 277, pp. 148-156. https://doi.org/10.1016/j.biortech.2018.12.098

Yan W., Xiao Y., Yan W., Ding R., Wang S., Zhao F.The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chem. Eng. J., 2019, vol. 358, pp. 1421-1437. https://doi.org/10.1016/j.cej.2018.10.128

Konovalova E.Yu., Stom D.I., Zhdanova G.O., Yuriev D.A., Li Y., Barbora L., Gos-wami P. The Microorganisms Used For Working In Microbial Fuel Cells. AIP Conf. Proc., 2018, vol. 1952, 020017. https://doi.org/10.1063/1.5031979

Gorbunova Yu.O., Karpukhina L.S., Tolstoy M.Yu., Timofeeva S.S., Stom D.I. The production of biofuel and the generation of electricity by Clostridium acetobutylicum in microbial fuel cells. 18th Int. Sci. Geoconf SGEM 2018 (Albena, Bulgaria), 2018, vol. 18, Energy and Clean Technologies, is. 4.1, pp. 705-712.

Wang X., Cheng S., Feng Y., Merrill M.D., Saito T., Logan B.E. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells. Environ. Sci. Technol., 2009, vol. 43, pp. 6870-6874. https://doi.org/10.1021/es900997w

Wilberforce T., Sayed E.T., Abdelkareem M.A., Elsaid K., Olab A.G. Value added products from wastewater using bioelectrochemical systems: Current trends and perspectives. J. Water Process Eng., 2021, vol. 39, 101737. https://doi.org/10.1016/j.jwpe.2020.101737

Xafenias N., Mapelli V. Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int. J. Hydrogen Energy, 2014, vol. 39, pp. 21864-21875. https://doi.org/10.1016/j.ijhydene.2014.05.038

Zhdanova G.O., Dukhnov S.S., Stom D.I. Single-cell biofuel element of simple construction from sanitary parts and testing of its work. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 451, Int. Conf. on Construction, Architecture and Technosphere Safety, 012230. URL: http://iopscience.iop.org/article/10.1088/1757-899X/451/1/012230

Zhdanova G.О., Stom D.I., Azarenko Е.V. Elimination of nitrate ions in bio-fuel cells. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 229, Prospects Mining and Metallurgy Industry Development, 012031. https://doi.org/10.1088/1755-1315/229/1/012031


Full text (russian)