«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2021. Vol 37

Influence of Selenium Nanocomposites in Natural Matrices on Antioxidant Status of Potato Plants in vitro

Author(s)
O. A. Nozhkina, A. I. Perfileva, N. S. Zabanova, T. V. Ganenko, N. I. Nechaev, A. V. Tretyakova, I. A. Graskova
Abstract
In the present work researches on influence of chemically synthesized nanocomposites of selenium (NC) in natural polymeric matrices - arabinogalactan (selenium content 6.4%) and starch (selenium content 1.2%) on a condition of antioxidant system of potato plants are presented. It is known that during abiotic or biotic stress, lipid peroxidation products (POL) are formed in plant tissues and the content of reactive oxygen species (ROS) in plant tissues increases, which leads to dysfunction of the plant cell membrane, inhibition of biochemical processes in the plant cell and, as a consequence, cell death. Therefore, the main task of this work was the study of NC for antioxidant activity. Studies have been conducted on the effect of NC on the content of reactive oxygen species (ROS) in potato root tissues, the activity of peroxidase enzyme in the tissues of roots and leaves, and the content of lipid peroxidation products (LPO) - diene conjugates (DC) and malondialdehyde (MDA) in the tissues of roots and leaves of potatoes. Studies were conducted on uninfected potato plants of Lukyanovsky variety (susceptible variety) and infected with phytopathogenic bacterium Clavibacter sepedonicus (Cms) in vitro. The results of the study showed that NC affect the antioxidant system of plants during infection. NC action reduced the release of ROS, reduced the content of LPO products, and also reduced the activity of the enzyme peroxidase. Studies of the primary stress indicator – DC, it was found that only NC Se/Ag had a negligible effect when processing non-infected potato plants, but when at the same time, both studied substances reduced the indicator in the variant with infected plants. Thus, it was found that NC reduces the stress load on the infected plants, reducing cell damage by products of oxidative stress. Perhaps this effect is related to the nature of polysaccharide matrices and the size of encapsulated selenium nanoparticles in them and its toxic effect. Combining all the data obtained, we can talk about the effectiveness of NC in the fight against bacterial diseases of cultivated plants and assume its use as an effective and safe remedy against them.
About the Authors

Nozhkina Olga Aleksandrovna, Lead Engineer, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: smallolga@mail.ru

Perfileva Alla Innokent'evna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: alla.light@mail.ru

Zabanova Natalya Sergeevna, Candidate of Science (Biology), Senior Research, Scientist Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, Assistant Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: pavnatser@mail.ru

Ganenko Tatjana Vasilevna, Candidate of Science (Chemistry), Senior Research, Scientist A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1, Favorsky st., Irkutsk, 664033, Russian Federation, e-mail: ganenko@irioch.irk.ru

Nechaev Nikita Igorevich, Master's Student, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: watson.kot@yandex.ru

Tretyakova Anastasia Valeryevna, Candidate of Science (Biology), Assistant Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: anastasiya_chepi@mail.ru

Graskova Irina Alekseevna, Doctor of Sciences (Biology), Chief Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: graskova@sifibr.irk.ru

For citation
Nozhkina O.A., Perfileva A.I., Zabanova N.S., Ganenko T.V., Nechaev N.I., Tretyakova A.V., Graskova I.A. Influence of Selenium Nanocomposites in Natural Matrices on Antioxidant Status of Potato Plants in vitro. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2021, vol. 37, pp. 16-30. https://doi.org/10.26516/2073-3372.2021.37.16 (in Russian)
Keywords
selenium, nanocomposites, arabinogalactan, starch, potato, stress, ring rot, diene conjugates, malondialdehyde.
UDC
57.017.64
DOI
https://doi.org/10.26516/2073-3372.2021.37.16
References

Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biologicheskikh membranakh [Lipid peroxidation in biological membranes]. Moscow, Nauka Publ., 1972, 252 p. (in Russian)

Graskova I.A. Rol peroksidaz v ustoichivosti rastenii k bioticheskomu stressu [The role of peroxidases in plant resistance to biotic stress]. Saarbrücken, LAP Lambert Acad. Publ., 2011, 300 p. (in Russian)

Dubrovina V.I., Medvedeva S.A., Vityazeva S.A., Kolesnikova O.B., Aleksan-drova G.P., Gutsol L.O., Grishchenko L.A., Chetveryakova T.D. Struktura i immunomoduliruyushchee dejstvie arabinogalaktana listvennicy sibirskoj i ego proizvodnyh metallov [Structure and immunomodulatory action of Siberian larch arabinogalactan and its metal derivatives]. Irkutsk, Asprint Publ., 2007, 145 p. (in Russian)

Poliksenova V.D. Inducirovannaya ustojchivost rastenij k patogenam i abioticheskim stressovym faktoram: na primere tomata [Induced plant resestance to pathogens and abiotic stress facters on the exampale of the tomato]. Vestnik Belorusskogo gosudarstvennogo universiteta, Seriya 2: Khimiya. Biologiya. Geografiya [Bul. Belorus. St. Univ. Ser. 2. Chem., Biol., Geogr.], 2009, no. 1, pp. 48-60. (in Russian)

Chesnokova N.P., Ponukalina E.V., Bizenkova M.N. Mekhanizmy strukturnoi i funktsionalnoi dezorganizatsii biosistem pod vliyaniem svobodnykh radikalov [Mechanisms of structural and functional disorganization of biosystems under the influence of free radicals]. Fundamental research, 2007, no. 4, pp. 110-121. (in Russian)

Perfileva A.I., Nozhkina O.A., Tretyakova M.S., Graskova I.A., Klimenkov I.V., Suda-kov N.P., Alexandrova G.P., Sukhov B.G. Biological activity and safety for the environment of selenium nanoparticles encapsulated in starch macromolecules. Nanotechnologies in Russia, 2020, vol. 15, no. 1, pp. 96-104. https://doi.org/10.1134/S1995078020010152

Blokhina O., Virolainen E., Fagersted K.V. Antioxidants, oxidative stress and oxygen deprivation stress: a review. Annals of Botany, 2001, vol. 91, pp. 179-194. https://doi.org/10.1093/aob/mcf118

Chen F., Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromol., 2018, vol. 112, pp. 211–216. https://doi.org/10.1016/j.ijbiomac.2018.01.169

Martínez-Rubio R., Acebes J.L., Encina A., Kärkönen A. Class III peroxidases in cellulose deficient cultured maize cells during cell wall remodeling. Physiol. Plant., 2018, vol. 164, pp. 45-55. https://doi.org/10.1111/ppl.12710

Perfileva A.I., Moty’leva S.M., Klimenkov I.V., Graskova I.A., Sukhov B.G., Trofimov B.A. Development of antimicrobial nano-selenium biocomposite for protecting potatoes from bacterial phytopathogens. Nanotechnologies in Russia, 2017, vol. 12, no. 9-10, pp. 553-558. https://doi.org/10.1134/S1995078017050093

Hussein H.A., Darwesh O.M., Mekki B.B., El-Hallouty S.M. Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnol. Rep. (Amst), 2019, vol. 12, no. 24, pp. 1-7. https://doi.org/10.1016/j.btre.2019.e00377

Kaur G., Singh H.P., Batish D.R., Mahajan P., Kohli R.K., Rishi V. Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS ONE, 2015, vol. 10, pp. e0138713. https://doi.org/10.1371/journal.pone.0138713

Perfileva A.I., Tsivileva O.M., Nozhkina O.A., Karepova M.S., Graskova I.A., Ganenkо T.V., Sukhov B.G., Krutovsky K.V. Effect of natural polysaccharide matrix-based selenium nanocomposites on phytophthora cactorum and rhizospheric microorganisms. Nanomaterials, 2021, vol. 11, no. 9. https://doi.org/10.3390/nano11092274

Fichman Y., Mittler R. Rapid systemic signaling during abiotic and biotic stresses: is the ROS wave master of all trades? Plant J., 2020, vol. 102, no. 5, pp. 887-896. https://doi.org/10.1111/tpj.14685

Bailly C., Benamar A., Corbineau F., Côme D. Free radical scavenging as affected by accelerated ageing and subsequent priming in sunflower seeds. Physiol. Plant., 1998, vol. 104, pp. 646-652. https://doi.org/10.1034/j.1399-3054.1998.1040418.x

Nurminsky V.N., Perfileva A.I., Kapustina I.S., Graskova I.A., Sukhov B.G., Tro-fimov B.A. Growth-stimulating activity of natural polymer-based nanocomposites of selenium during the germination of cultivated plant seeds. Doklady Biochemistry and Biophysics, 2020, vol. 495, pp. 296-299. https://doi.org/10.1134/S1607672920060113

He X., Deng H., Hwang H.M. The current application of nanotechnology in food and ag-riculture. J. Food Drug Anal., 2019, vol. 27, no. 1, pp. 1-21. https://doi.org/10.1016/j.jfda.2018.12.002

Heath R.L., Packer L. Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochem. Biophysic., 1968, vol. 125, pp. 189-198. https://doi.org/10.1016/0003-9861(68)90654-1

Kidwai M., Ahmad I.Z., Chakrabarty D. Class III peroxidase: an indispensable enzyme for biotic/abiotic stress tolerance and a potent candidate for crop improvement. Plant Cell Rep., 2020, vol. 39, no. 11, pp. 1381-1393. https://doi.org/10.1007/s00299-020-02588-y

Lanza M. G. D. B., dos Reis A. R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol. Biochem., 2021, vol. 164, pp. 27-43. https://doi.org/10.1016/j.plaphy.2021.04.026

Mittler R. ROS are good. Trends Plant Sci., 2017, vol. 22, pp. 11-19. https://doi.org/10.1016/j.tplants.2016.08.002

Nadarajah K.K. ROS homeostasis in abiotic stress tolerance in plants. Int. J. Mol. Sci., 2020, vol. 21, no. 15, pp. 5208. https://doi.org/10.3390/ijms21155208

Raliya R., Saharan V., Dimkpa C., Biswas P. Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J. Agric. Food Chem., 2018, vol. 5, no. 66 (26), pp. 6487-6503. https://doi.org/10.1021/acs.jafc.7b02178

Prasad R., Bhattacharyya A., Nguyen Q.D. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol., 2017, vol. 20, no. 8, pp. 1014. https://doi.org/10.3389/fmicb.2017.01014

Vo K.T.X., Rahman M.M., Rahman M.M., Trinh K.T.T., Kim S.T., Jeon J.S. Proteomics and metabolomics studies on the biotic stress responses of rice: an update. Rice, 2021, vol. 14, pp. 30. https://doi.org/10.1186/s12284-021-00461-4

Rajput V.D., Harish, Singh R.K., Verma K.K., Sharma L., Quiroz-Figueroa F.R., Meena M., Gour V.S., Minkina T., Sushkova S., Mandzhieva S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology (Basel), 2021, vol. 10, no. 4, pp. 267. https://doi.org/10.3390/biology10040267

Kim D.Y., Kadam A., Shinde S., Saratale R.G., Patra J., Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J. Sci. Food Agric., 2018, vol. 98, no. 3, pp. 849-864. https://doi.org/10.1002/jsfa.8749

Hasanuzzaman M., Bhuyan M.H.M.B., Parvin K., Bhuiyan T.F., Anee T.I., Nahar K., Hossen M.S., Zulfiqar F., Alam M.M., Fujita M. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci., 2020, vol. 21, no. 22, pp. 8695. https://doi.org/10.3390/ijms21228695

Feng T., Chen S.S., Gao D.Q., Liu G.Q., Bai H.X., Li A., Peng L.X., Ren Z.Y. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica, 2015, vol. 53, pp. 609-612. https://doi.org/10.1007/s11099-015-0118-1

Perfileva A.I., Nozhkina O.A., Graskova I.A., Dyakova A.V., Pavlova A.G., Aleksan-drova G.P., Klimenkov I.V., Sukhov B.G., Trofimov B.A. Selenium nanocomposites having polysaccharid matrices stimulate growth of potato plants in vitro infected with ring rot patho-gen. Dokl. Biol. Sci., 2019, vol. 489, pp. 184-188. https://doi.org/10.1134/S0012496619060073

Sotoodehnia-Korani S., Iranbakhsh A., Ebadi M., Majd A., Ardebili Z.O. Selenium na-noparticles induced variations in growth, morphology, anatomy, biochemistry, gene expression, and epigenetic DNA methylation in Capsicum annuum; an in vitro study. Environ. Pollut., 2020, vol. 265 (Pt B):114727. https://doi.org/10.1016/j.envpol.2020.114727

Perfileva A.I., Nozhkina O.A., Graskova I.A., Sidorov A.V., Lesnichaya M.V., Aleksandrova G.P., Dolmaa G., Klimenkov I.V., Sukhov B.G. Synthesis of selenium and silver nano-biocomposites and their influence on phytopathogenic bacterium Clavibacter michiganensis subsp. Sepedonicus. Russian Chemical Bulletin, 2018, vol. 67, no. 1, pp. 157-163. https://doi.org/10.1007/s11172-018-2052-4

Nozhkina O.A., Perfileva A.I., Graskova I.A., Djyakova A.V., Nurminsky V.N., Klimenkov I.V., Ganenko T.V., Borodina T.N., Aleksandrova G.P., Sukhov B.G., Trofimov B.A. The biological activity of a selenium nanocomposite encapsulated with carrageenan macromolecules regarding the ring rot pathogen and potato plants. Nanotechnologies in Russia, 2019, vol. 14, no. 5-6, pp. 255-262. https://doi.org/10.1134/S1995078019030091

Ardebili Z.O., Ardebili N.O., Jalili S., Safiallah S. The modified qualities of basil plants by selenium and/or ascorbic acid. Turk. J. Bot., 2015, vol. 39, pp. 401-407. https://doi.org/10.3906/bot-1404-20

Romanenko A.S., Riffel A.A., Graskova I.A., Rachenko M.A. The role of extracellular pH-homeostasis in potato resistance to ringrot pathogen. J. Phytopathol., 1999, vol. 147, no. 11-12, pp. 679-686. https://doi.org/10.1046/j.1439-0434.1999.00450.x

White P.J. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj., 2018, vol. 1862, no. 11, pp. 2333-2342. https://doi.org/10.1016/j.bbagen.2018.05.006


Full text (russian)