Список выпусков > Серия «Биология. Экология». 2017. Том 20
Белки теплового шока картофеля in vitro при патогенезе кольцевой гнили
1. Влияние климатических изменений на урожайность картофеля и моркови в условиях Алтайского Приобъя / Е. Г. Пивоварова [и др.] // Изв. АГУ. Биол. науки. – 2011. – № 3. – С. 40–44.
2. Влияние экзополисахаридов возбудителя кольцевой гнили на кинетические параметры аденилатциклаз растений картофеля / Л. А. Ломоватская [и др.] // Докл. Акад. наук. – 2011. – Т. 441 – С. 1–4.
3. Защита картофеля от болезней, вредителей и сорняков / Б. В. Анисимов [и др.]. – М. : Картофелевод, 2009. – 272 с.
4. Колупаев Ю. Е. Ферментативные источники активных форм кислорода в растительных клетках: регуляция активности и участие в стрессовых реакциях / Ю. Е. Колупаев, Ю. В. Карпец, Т. О. Ястреб // Вісник Харківського Національного Аграрного Університету Серія Біологія. – 2012. – Vol. 1(25). – P. 6–22.
5. Малиновский В. И. Механизмы устойчивости растений к вирусам / В. И. Малиновский. – Владивосток : Дальнаука, 2010. – 324 с.
6. Медведев С. С. Кальциевая сигнальная система растений / С. С. Медведев // Физиология растений. – 2005. –Т. 52. – C. 1–24.
7. Механизм функционирования кальциевой сигнальной системы у растений при действии теплового стресса. Роль митохондрий в этом процессе / Е. Г. Рихванов [и др.] // Физиология растений. – 2014. – Т. 61. – С. 155–169.
8. Побежимова Т. П. Методы изучения митохондрий растений. Полярография и электрофорез / Т. П. Побежимова, А. В. Колесниченко, О. И. Грабельных. – М. : НПК «Промэкобезопасность», 2004. – 98 с.
9. Сигнальная роль активных форм кислорода при стрессе у растений / В. Д. Креславский [и др.] // Физиология растений. – 2012. – Т. 59. – С. 163–178.
10. Список пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации. Справочное издание – М. : Ред. журн. «Защита и карантин растений», 2013. – 636 с.
11. Тарчевский И. А. Сигнальные системы клеток растений / И. А. Тарчевский. – М. : Наука, 2002. – 294 с.
12. Третьякова О. М. Экспрессия PR-генов при бактериальной инфекции / О. М. Третьякова, А. И. Евтушенков // Тр. БГУ. – 2011. – № 6. – С. 163–167.
13. Analysis of temperature modulation of plant defense against biotrophic microbes / Y. Wang [et al.] // Mol. Plant Microbe Interact. – 2009. – Vol. 22. – P. 498–506.
14. Chang R. J. Effects of temperature, plant age, inoculum concentration, and cultivar on the incubation period and severity of bacterial canker of tomato / R. J. Chang, S. M. Ries, J. K. Pataky // Plant Disease. – 1992. – Vol. 76. – P. 1150–1155.
15. Chen S. R. Bcl-2 family members inhibit oxidative stress-induced programmed cell death in Saccharomyces cerevisiae / S. R. Chen, D. D. Dunigan, M. B. Dickman // Free Radic. Biol. Med. – 2003. – Vol. 15. – P. 1315–1325.
16. Climate change effects on plant disease: genomes to ecosystems / K. A. Garrett [et al.] // Annu. Rev. Phytopathol. – 2006. – Vol. 44. – P. 489–509.
17. Climate change: can wheat beat the heat? / R. Ortiz [et al.] // Agriculture, Ecosystems and Environment. – 2008. – Vol. 126. – P. 46–58.
18. Climate warming and disease risks for terrestrial and marine biota / H. C. Harvell [et al.] // Science. – 2002. – Vol. 296. – P. 2158–2162.
19. Colombatti F. Plant mitochondria under pathogen attack: A sigh of relief or a last breath? / F. Colombatti, D. H. Gonzalez, E. Welchen // Mitochondrion. – 2014. – Vol. 3. – P. 1567–1249.
20. Craita E. B. Plant tolerance to high temperature in a changing environment: scientific fundamentals and productionof heat stress-tolerant crops / E. B. Craita, T. Gerats // Front Plant Sci. – 2013. –Vol. 4. – P. 273.
21. Cvetkovska M. Alternative oxidase impacts the plant response to biotic stress by influencing the mitochondrial generation of reactive oxygen species / M. Cvetkovska, G. C. Vanlerberghe // Plant Cell Environ. – 2013. – Vol. 36. – P. 721–732.
22. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change / F. Salinari [et al.] // Glob. Change Biol. – 2006. – Vol. 12. – P. 1299–1307.
23. Effect of Extreme Temperatures on Powdery Mildew Development and Hsp70 Induction in Tomato and Wild Solanum spp. / L. Kubienová [et al.] // Plant Protect. Sci. – 2013. – Vol. 49. – P. 41–55.
24. Eichenlaub R. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens / R. Eichenlaub, K. H. Gartemann // Annu Rev. Phytopathol. – 2011. – Vol. 49. – P. 445–464.
25. Emerging complexity in reactive oxygen species production and signaling during the response of plants to pathogens / T. Vellosillo [et al.] // Plant Physiol. – 2010. – Vol. 154. – P. 444–448.
26. Epidemology of Clavibacter michiganensis subsp. sepedonicus in relation to control of bacterial ring rot / J. M. van der Wolf [et al.] // Plant Research International B.V. Report. – 2005. – Vol. 95. – 44 р.
27. Heat-induced resistance in barley to powdery mildew (Blumeria graminis f.sp. hordei) is associated with a burst of active oxygen species / L. Vallelian-Bindschedler [et al.] // Physiological and Molecular Plant Pathology. – 1998. – Vol. 52. – P. 185–199.
28. Heat tolerance in plants / A. Wahid [et al.] // An overview. Environmental and Experimental Botany. – 2007. – Vol. 61. – P. 199–223.
29. Induction of a Small Heat Shock Protein and its Functional Roles in Nicotiana Plants in the Defense Response Against Ralstonia solanacearum / M. Maimbo [et al.] // Plant Physiol. – 2007. – Vol. 145. – P. 1588–99.
30. Infection of plant material derived from Solanum acaule with Clavibacter michiganensis ssp. sepedonicus: temperature as a determining factor in immunity of S. acaule to bacterial ring rot / J. Laurila [et al.] // Plant Pathology. – 2003. – Vol. 52. – P. 496–504.
31. Krause M. Harpin inactivates mitochondria in Arabidopsis suspension cells / M. Krause, J. Durner // Mol. Plant Microbe Interact. – 2004. – Vol. 17. – P. 131–139.
32. Logan D. Mitochondrial and Cytosolic Calcium Dynamics Are Differentially Regulated in Plants / D. Logan, M. R. Knight // Plant Physiol. – 2003. – Vol. 133. – P. 21–24.
33. Ma W. The grateful dead: calcium and cell death in plant innate immunity / W. Ma, G. A. Berkowitz // Cell Microbiol. – 2007. – Vol. 9. – P. 2571–2585.
34. Mina U. Effects of Climate Change on Plant Pathogens / U. Mina, P. Sinha // Environ. News. – 2008. – Vol. 14. – P. 6–10.
35. Molecular mechanisms of the plant heat stress response / A. L. Qu [et al.] // Bi-ochem. Biophys. Res. Commun. – 2013. – Vol. 432. – P. 203–207.
36. Nelson G. A. Corynebacterium sepedonicum in potato: Effect of inoculum concentration on ring rot symptoms and latent infection / G. A. Nelson // Can. J. Plant Pathol. – 1982. – Vol. 4. – P. 129–133.
37. Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection / J. Piterková [et al.] // Plant Sci. – 2013. – Vol. 207. – P. 57–65.
38. Prasch C. M. Signaling events in plants: Stress factors in combination change the picture / C. M. Prasch, U. Sonnewald // Plant Physiol. – 2014. – Vol. 162. – P. 1849–1866.
39. Range and severity of a plant disease increased by global warming / N. Evans [et al.] // J. R. Soc. Interface. – 2007. – Vol. 5. – P. 525–531.
40. ROS and redox signalling in the response of plants to abiotic stress / N. Suzuki [et al.] // Plant Cell Environ. – 2012. – Vol. 35. – P. 259–270.
41. Saidi Y. Heat perception and signalling in plants: a tortuous path to thermotolerance / Y. Saidi, A. Finka, P. Goloubinoff // New Phytol. – 2011. – Vol. 190. – P. 556–565.
42. Schweizer P. Heat-induced resistance in barley to the powdery mildew fungus Erysiphe graminis f.sp. hordei / P. Schweizer, L. Vallélian-Bindschedler, E. Mösinger // Physiol. Mol. – 1995. – Vol. 47. – P. 51–66.
43. Singh A. Plant Hsp100/ClpB-like proteins: poorly-analyzed cousins of yeast ClpB machine / A. Singh, A. Grover // Plant Mol. Biol. – 2010. – Vol. 74. – P. 395–404.
44. Steinhorst L. Calcium and reactive oxygen species rule the waves of signaling / L. Steinhorst, J. Kudla // Plant Physiol. – 2013. – Vol. 163. – P. 471–485.
45. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase / L. Király [et al.] // J. Gen. Virol. – 2008. – Vol. 89. – P. 799–808.
46. Temperature induced susceptibility to Phytophthora sojae in soybean isolines carrying different Rps genes / M. Gijzen [et al.] // Physiol. Mol. Plant Pathol. – 1996. – Vol. 48. – P. 209–215.
47. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses / J. Kilian [et al.] // Plant J. – 2007. – Vol. 50. – P. 347–363.
48. The Clavibacter michiganensis subsp. michiganensis – tomato interactome re-veals the perception of pathogen by the host and suggests mechanisms of infection / A. Savidor [et al.] // J. Proteome Res. – 2012. – Vol. 11. – P. 736–750.
49. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions / E. Basha [et al.] // J. Biol. Chem. – 2004. – Vol. 279. – P. 7566–7575.
50. The role of extracellular pH-homeostasis in potato resistance to ring-rot pathogen / A. S. Romanenko [et al.] // J. Phytopathol. – 1999. – Vol. 147. – P. 679–686.
51. van Loon L.C. Significance of inducible defense-related proteins in infected plants / L. C. van Loon, M. Rep, C. M. J. Pieterse // Annu. Rev. Phytopathol. – 2006. – Vol. 44. – P. 135–162.
52. Vierling E. The roles of heat shock proteins in plants / E. Vierling // Plant Mol. Biol. – 1991. – Vol. 42. – P. 579–620.
53. Xie Z. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative hosphorylation in tobacco cells / Z. Xie, Z. Chen // Plant Physiol. – 1999. – Vol. 120. – P. 217–226.