«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2023. Vol 45

Possible Role of Intestinal Microbiome Representatives in Biotransformation of Aryl- and Pyridyl-Containing Phosphines and their Derivatives According to 31P NMR Spectroscopy Data

Author(s)
А. S. Pendyukhova, I. S. Dranitsa, V. L. Mikhailenko, А. А. Pristavka, S. I. Verkhoturova, N. A. Belogorlova, S. N. Arbuzova, G. V. Yurinova, V. P. Salovarova
Abstract
Organophosphorus compounds (OPCs) are used in many areas of human activity. Unique physicochemical properties and high biological activity not only determine the applied value of OPCs but also give them the properties of xenobiotics that are harmful to human health, which largely depend on the state of the endogenous microbiota. The purpose of this work is to assess the effect of pyridyl- and aryl-containing phosphines, their oxides, and sulfides on the growth of Bifidobacterium bifidum and Escherichia coli and to identify possible patterns of biotransformation of OPCs using 31P NMR spectroscopy. Bacteria were cultivated in thioglycollate medium containing the tested phosphorus compounds. At the stationary growth phase was determined the cell concentration and were recorded spectra 31P NMR. It was shown that the most reliable (p<0,05) and opposite effect on the growth dynamics of both species of bacteria was exhibited by phosphine sulfides 1 and 3: PS1 (pyridyl) reduced the population reproduction rate by 35–40%, and PS3 (aryl) increased it by 45–60%. At the same time, OPCs themselves were most likely not metabolized. Phosphine oxides reduced the average titer of bacteria compared to the control, and PO3 caused complete cell elimination after 24 hours cultivation. In the medium with PO2 was identified PS2 appeared, which may be caused by the biologically mediated process of oxide-to-sulfide conversion. All phosphines are chemically labile and they were oxidized abiotically to oxides and sulfides. Formed sulfides could be the reason for a significant increase (to 35%) in the growth rate bacteria population both species. Five new unidentified organophosphorus compounds (UPC) were recorded on medias with B. bifidum, some of which may belong to the products of biotransformation of the original OPCs. Some organic phosphates, homologous to the phosphine oxides tested, have a δp value neighboring to the taken NMR spectra. This may indicate the way of their biological transformation: oxidation of the CP bond in the phosphine oxides to an ester bond of organic phosphates. This ability of bifidobacteria to metabolize OPCs will make it possible to develop a therapeutic strategy based on the use of B. bifidum as a microorganism that degrades phosphorus-containing xenobiotics.
About the Authors

Pendyukhova Anna Sergeevna, Undegraduate, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: annapend@yandex.ru

Dranitsa Irina Sergeevna, Undegraduate, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: dranitsa.irina@mail.com

Mikhailenko Valentina Lvovna, Candidate of Sciences (Chemistry), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: mival63@gmail.com

Pristavka Aleksey Alexandrovich, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: pristavk@gmail.com

Verkhoturova Svetlana Ilyasovna, Candidate of Sciences (Chemistry), Senior Research Scientist, A. E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1, Favorsky st., Irkutsk, 664033, Russian Federation, e-mail: verkhoturova@irioch.irk.ru

Belogorlova Natalia Alekseevna, Candidate of Sciences (Chemistry), Senior Research Scientist, A. E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1, Favorsky st., Irkutsk, 664033, Russian Federation, e-mail: belogorlova@irioch.irk.ru

Arbuzova Svetlana Nikolaevna, Candidate of Sciences (Chemistry), Senior Research Scientist, A. E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1, Favorsky st., Irkutsk, 664033, Russian Federation, e-mail: arbuzova@irioch.irk.ru

Yurinova Galina Valerievna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: yurinova@yandex.ru

Salovarova Valentina Petrovna, Doctor of Sciences (Biology), Professor, Head of Department, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: vsalovarova@gmail.com

For citation
Pendyukhova А.S., Dranitsa I.S., Mikhailenko V.L., Pristavka А.А., Verkhoturova S.I., Belogorlova N.A., Arbuzova S.N., Yurinova G.V., Salovarova V.P. Possible Role of Intestinal Microbiome Representatives in Biotransformation of Aryl- and Pyridyl-Containing Phosphines and their Derivatives According to 31P NMR Spectroscopy Data. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2023, vol. 45, pp. 32-45. https://doi.org/10.26516/2073-3372.2023.45.32 (in Russian)
Keywords
pyridyl- and aryl-containing phosphines (-oxides, -sulfides), Bifidobacterium bifidum, Escherichia coli, 31P NMR spectroscopy.
UDC
543.429.23+547+579.6
DOI
https://doi.org/10.26516/2073-3372.2023.45.32
References

Sviridov A.V., Shushkova T.V., Epiktetov D.O., Tarlachkov S.V., Ermakova I.T., Leont'evskii A.A. Biodegradatsiya fosfororganicheskikh zagryaznitelei pochvennymi bakteriyami: biokhimicheskie aspekty i nereshennye problemy [Biodegradation of organophosphorus pollutants by soil bacteria: biochemical aspects and unresolved problems]. Biotekhnologiya, 2020, vol. 36, no. 4. pp. 126-135. (in Russian)

Ashikhmina T.Ya., Alalykina N.M., Domracheva L.I. Shirokikh I.G., Ogorodnikova S.Yu. Biologicheskii monitoring prirodno-tekhnogennykh sistem [Biological monitoring of natural and manmade systems]. Syktyvkar, Komi SC UrB RAS, 2011, 387 pp. (in Russian)

Zenchenko A.A., Drenichev M.S., Il’icheva I.A., Mikhailov S.N. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Mol. Biol., 2021, vol. 55, pp. 786-812. https://doi.org/10.31857/S0026898421050104

Sarlak Z., Khosravi-Darani K., Rouhi M., Garavand F., Mohammadi R., Reza Sobhiyeh M. Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics. Food Control, 2021, vol. 126, 108006. https://doi.org/10.1016/j.foodcont.2021.108006

Alvarez-Cardona J.J., Whited L.K., Chemaly R.F. Brincidofovir: understanding its unique profile and potential role against adenovirus and other viral infections. Future Microbiol., 2020, vol. 15, no. 6, pp. 389-400. https://doi.org/10.2217/fmb-2019-0288

Wanderlind E.H., Bittencourt C.R., Manfredi A.M., Gerola A.P., Souza B.S., Fiedler H.D., Nome F. Cu(II)-catalyzed hydrolysis of tris-2-pyridyl phosphate assisted by sodium dodecyl sulfate micelles. J. Phys. Org. Chem., 2018, vol. 32, no.1, e3837. https://doi.org/10.1002/poc.3837

De Clercq E. Antiviral: past, present and future. Biochem. Pharmacol., 2013, vol. 85, pp. 727-744. https://doi.org/10.1016/j.bcp.2012.12.011

Yu H., Yang H., Shi E., Tang W. Development and clinical application of phosphorus-containing drugs. Med. Drug Discov., 2020, vol. 8, p. 100063. https://doi.org/10.1016/j.medidd.2020.100063

Trofimov B.A., Artem’ev A.V., Malysheva S.F., Gusarova N.K., Belogorlova N.A., Korocheva A.O., Gatilov Y.V., Mamatyuk V.I. Expedient one-pot organometallics-free synthesis of tris(2-pyridyl)phosphine from 2-bromopyridine and elemental phosphorus. Tetrahedron Lett., 2012, vol. 53, no. 19, pp. 2424-2427. https://doi.org/10.1016/j.tetlet.2012.03.004

Gusarova N.K., Trofimov B.A. Organophosphorus chemistry based on elemental phosphorus: advances and horizons. Russ. Chem. Rev., 2020, vol. 89, no. 2, pp. 225-249. https://doi.org/10.1070/rcr4903

Rueda-Ruzafa L., Cruz F., Roman P., Cardona D. Gut microbiota and neurological effects of glyphosate. NeuroToxicol., 2019, vol. 75, pp. 1-8. https://doi.org/10.1016/j.neuro.2019.08.006

Kavitha V., Anandhan R., Alharbi N.S., Kadaikunnan S., Khaled J.M., Almanaa T.N., Govindarajan M. Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampito mauritii (Kinberg). Microbial Pathogenesis, 2020, vol. 139, p. 103893. https://doi.org/10.1016/j.micpath.2019.103893

Kafarski P. Phosphonates: Their Natural Occurrence and Physiological Role. Contemporary Topics about Phosphorus in Biology and Materials. IntechOpen, 2020, pp. 1-19.https://doi.org/10.5772/intechopen.80727

Kühl O. Phosphorus-31 NMR Spectroscopy: A Concise Introduction for the Synthetic Organic and Organometallic Chemist. Springer, 2008, 132 p. https://doi.org/10.1007/978-3-540-79118-8

Malysheva S.F., Kuimov V.A., Arbuzova S.N. Elemental Phosphorus in the Synthesis of Organophosphorus Compounds: The Recent Advances (A Review). Russ. J. Gen. Chem., 2023, vol. 93, no. 1, pp. S238-S255.https://doi.org/10.1134/S1070363223140293

Armenova N., Tsigoriyna L., Arsov A., Petrov K., Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods, 2023, vol. 12, no. 6, p. 1163. https://doi.org/10.3390/foods12061163

Roman P., Cardona D., Sempere L., Carvajal F. Microbiota and organophosphates. NeuroToxicol., 2019, vol. 75, pp. 200-208.https://doi.org/10.1016/j.neuro.2019.09.013

Mitkovska V., Chassovnikarova T. Chlorpyrifos levels within permitted limits induce nuclear abnormalities and DNA damage in the erythrocytes of the common carp. Environ. Sci. Pollut. Res., 2020, vol. 27, pp. 7166-7176. https://doi.org/10.1007/s11356-019-07408-9

Sterkhova I.V., Smirnov V.I., Malysheva S.F., Kuimov V.A., Belogorlova N.A. Molecular and crystal structures of tris(3-methylphenyl)phosphine and its chalcogenides. J. Mol. Struct., 2019, vol. 1197, pp. 681-690. https://doi.org/10.1016/j.molstruc.2019.07.094

Myers J.A., Curtis B.S., Curtis W.R. Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys., 2013, vol. 6, no. 4, pp. 1-15.https://doi.org/10.1186/2046-1682-6-4

Knak T., Abdullaziz M.A., Höfmann S., Alves Avelar L.A., Klein S., Martin M., Fischer M., Tanaka N., Kurz T. Over 40 Years of Fosmidomycin Drug Research: A Comprehensive Review and Future Opportunities. Pharmaceuticals, 2022, vol. 15, pp. 1553. https://doi.org/10.3390/ph15121553

Malysheva S., Kuimov V., Belovezhets L., Belogorlova N., Borovskaya M., Borovskii G. Phosphine chalcogenides and their derivatives from red phosphorus and functionalized pyridines, imidazoles, pyrazoles and their antimicrobial and cytostatic activity. Bioorg. Chem., 2023, vol. 132, p. 106363. https://doi.org/10.1016/j.bioorg.2023.106363

Reddy G. V. S., Bontha R. R., Yoon J.-Y. Interaction of 2-Hydroxyquinoxaline (2-HQ) on Soil Enzymes and Its Degradation: A Review. J. People Plants Environ., 2020, vol. 23, no. 4, pp. 399-410. https://doi.org/10.11628/ksppe.2020.23.4.399

Rodríguez-Gascón A., Canut-Blasco A. Deciphering pharmacokinetics and pharmacodynamics of Fosfomycin. Rev. Esp. Quimioter., 2019, vol. 32, no. 1, pp. 19-24.

Sosthène P.-M., Ch.-J. Li. From rocks to bioactive compounds: a journey through the global P(V) organophosphorus industry and its sustainability. Royal Soc. Chem., 2023, vol. 1, pp. 11-37.https://doi.org/10.1039/D2SU00015F

Malysheva S.F., Kuimov V.A., Belogorlova N.A., Albanov A.I., Gusarova N.K., Trofimov B.A. Superbase-Assisted Selective Synthesis of Triarylphosphines from Aryl Halides and Red Phosphorus: Three Consecutive Different SNAr Reactions in One Pot. J. Org. Chem., 2019, no. 36, pp. 6240-6245. https://doi.org/10.1002/ejoc.201901005

Dayde B., Pierra C., Gosselin G., Surleraux D., Ilagouma A.T., Laborde C., Pirat J.-L. Synthesis of Unnatural Phosphonosugar Analogues. Eur. J. Org. Chem., 2014, vol. 2014, no. 6, pp. 1333-1337.https://doi.org/10.1002/ejoc.201301543

Medeiros M., Manfredi A.M., Kirby A.J., Nome F. The spontaneous hydrolysis of 2-pyridyl phosphate is a good model for the special mechanism for the hydrolysis of phosphate monoester monoanions. J. Phys. Organ. Chem., 2013, vol. 26, no. 12, pp. 1044-1047. https://doi.org/10.1002/poc.3165

Jaiswal D.K., Krishna R., Singh S., Belwal T.,. Verma J.P, Yadav J. Toxicity of organophosphate pesticide on soil microorganism: risk assessments strategies. Emerging trends in plant pathology. Murphy & Moore Publ., 2021, pp. 257-295. https://doi.org/10.1007/978-981-15-6275-4


Full text (russian)