«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2024. Vol 50

Effect of Selenium-Сontaining Nanocomposites in Natural Polymer Matrices on Potato Productivity Under Field Experiment Conditions

Author(s)
A. I. Perfileva, I. A. Graskova
Abstract
Field trials were conducted to study the effect of selenium nanocomposites (NC Se) in natural polymer matrices on potato productivity. Gala potato tubers were sprayed with selenium NC 2 weeks before planting: arabinogalactan-based (NC Se/AG), starch-based (NC Se/St) and carrageenan-based (NC Se/Car). The tubers were then planted in natural field conditions. Standard agrotechnical methods of potato cultivation were used during the growing season. After 90 days of vegetation, productivity was analyzed based on the following indicators: average tuber weight and number of tubers, tubers obtained from experimental plants, crop structure and number of rotten tubers. The experiments were carried out for 5 seasons, from 2020 to 2024. The results showed that NC Se does not have a negative effect on potato productivity. In some years, an increase in productivity in the form of an increase in tuber biomass and their number was noted when treating with NC Se/AG and NC Se/Car. Thus, NC Se/AG significantly increased the number of tubers in the first and third years of testing. NC Se/St increased the number of tubers only in the second year of testing (2021). Treatment with NC Se/AG in the first, second and fifth years of testing increased the weight of potato tubers. NC Se/Car increased the weight of potato tubers in the last year of testing. When combining all the data for 5 years, it was found that only NC Se/AG had a significant stimulating effect on the average weight of a tuber obtained from one plant compared to the control. At the same time, no significant effect of NC on the number of tubers obtained from one plant was found. Every year, each NC treatment showed an increase in the yield structure of economically important tubers (commercial and seed). In 2022, the aboveground biomass of potatoes was estimated. Treatment with NC Se stimulated the number of stems in potato plants. The presented results demonstrate that the NC Se/AG nanocomposite reduced the number of rotten potato tubers. NC Se/AG can be considered as a promising compound for growth stimulation of cultivated plants and increasing resistance to phytopathogens.
About the Authors

Perfileva Alla Innokent'evna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: alla.light@mail.ru

Graskova Irina Alekseevna, Doctor of Science (Biology), Principal Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: graskova@sifibr.irk.ru

For citation
Perfileva A.I., Graskova I.A. Effect of Selenium-Сontaining Nanocomposites in Natural Polymer Matrices on Potato Productivity Under Field Experiment Conditions. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2024, vol. 50, pp. 12-27. https://doi.org/10.26516/2073-3372.2024.50.12 (in Russian)
Keywords
potato, field experiment, selenium, arabinogalactan, starch, carrageenan, nanoparticles, nanocomposites, biometric characteristics, productivity.
UDC
577.2
DOI
https://doi.org/10.26516/2073-3372.2024.50.12
References

Perfileva A.I., Nozhkina O.A., Tretyakova M.S., Graskova I.A., Klimenkov I.V., Sudakov N.P., Alexandrova G.P., Sukhov B.G. Biological activity and environmental safety of selenium nanoparticles encapsulated in starch macromolecules. Nanotechnologies in Russia, 2020, vol. 15, no. 1, pp. 96-104. https://doi.org/10.1134/S199272232001015X

Nozhkina O.A., Perfileva A.I., Graskova I.A., Nurminsky V.N., Klimenkov I.V., Dyakova A.V., Ganenko T.V., Borodina T.N., Aleksandrova G.P., Sukhov B.G., Trofimov B.A. The biological activity of a selenium nanocomposite encapsulated in carrageenan macromolecules with respect to ring rot pathogenesis of potato plants. Nanotechnologies in Russia, 2019, vol. 14, no. 5-6, pp. 255- 262. https://doi.org/10.1134/s1995078019030091

Graskova I.A., Perfileva A.I., Nozhkina O.A., Dyakova A.V., Nurminsky V.N., Klimenkov I.V., Sudakov N.P., Borodina T.M., Aleksandrova G.P., Lesnichaya M.V., Sukhov B.G., Trofimov B.A. Effect of nanosized selenium on ring rot pathogen and potato in vitro. Khimiya Rastitelnogo Syr'ya, 2019, no. 3, pp. 345-354. https://doi.org/10.14258/jcprm.2019034794 (in Russian)

Pogodnye syurprizy ukhodyashchego 2021 goda na territorii Irkutskoi oblasti [Weather surprises of the outgoing year 2021 in the Irkutsk region]. Irkutsk Regional Department of Hydrometeorology and Environmental Monitoring, 2021. Available at: https://www.irmeteo.ru/index.php?id=697 (in Russian)

Perfileva A.I., Nozhkina O.A., Graskova I.A., Sidorov A.V., Lesnichaya M.V., Aleksandrova G.P., Dolmaa G., Klimenkov I.V., Sukhov B.G. Synthesis of selenium and silver nanobiocomposites and their influence on phytopathogenic bacterium Clavibacter michiganensis subsp. sepedonicus. Russ. Chem. Bull., 2018, vol. 67, no. 1, pp. 157-163. https://doi.org/10.1007/s11172-018-2052-4

Perfileva A.I., Motyl'eva S.M., Klimenkov I.V., Sukhov B.G., Trofimov B.A. Development of antimicrobial nano-selenium biocomposite for protecting potatoes from bacterial phytopathogens. Nanotechnologies in Russia, 2017, vol. 12, no. 9-10, pp. 553-558. https://doi.org/10.1134/S1995078017050093

Serov D.A., Khabatova V.V., Vodeneev V., Li R., Gudkov S.V. A review of the antibacterial, fungicidal and antiviral properties of selenium nanoparticles. Materials (Basel), 2023, vol. 16(15), 5363. https://doi.org/10.3390/ma16155363

Genchi G., Lauria G., Catalano A., Sinicropi M.S., Carocci A. Biological activity of selenium and its impact on human health. Int. J. Mol. Sci., 2023, vol. 24(3), 2633. https://doi.org/10.3390/ijms24032633

Neysanian M., Iranbakhsh A., Ahmadvand R., Oraghi Ardebili Z., Ebadi M. Comparative efficacy of selenate and selenium nanoparticles for improving growth, productivity, fruit quality, and postharvest longevity through modifying nutrition, metabolism, and gene expression in tomato; potential benefits and risk assessment. PLoS One, 2020, vol. 15(12), e0244207. https://doi.org/10.1371/journal.pone.0244207

Babajani A., Iranbakhsh A., Ardebili Z.O., Eslami B. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ. Sci. Poll. Res., 2019, vol. 26, no. 24, pp. 24430-24444. https://doi.org/10.1007/s11356-019-05676-z

Perfileva A.I., Kharasova A.R., Nozhkina O.A., Sidorov A.V., Graskova I.A., Krutovsky K.V. Effect of nanopriming with selenium nanocomposites on potato productivity in a field experiment, soybean germination and viability of Pectobacterium carotovorum. Horticulturae, 2023, vol. 9, 458. https://doi.org/10.3390/horticulturae9040458

Perfileva A.I., Tsivileva O.M., Nozhkina O.A., Karepova M.S., Graskova I.A., Ganenko T.V., Sukhov B.G., Krutovsky K.V. Effect of natural polysaccharide matrix-based selenium nanocomposites on Phytophthora cactorum and rhizospheric microorganisms. Nanomaterials, 2021b, vol. 11, 2274. https://doi.org/10.3390/nano11092274

Zhang X., Yang X., Ruan J., Chen H. Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: A pot experiment under field condition. Sci. Total Environ., 2024, vol. 914, 169923. https://doi.org/10.1016/j.scitotenv.2024.169923

Hussein H.A., Darwesh O.M., Mekki B.B., El-Hallouty S.M. Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnol. Rep. (Amst)., 2019, v. 12(24), pp. 1-7. https://doi.org/10.1016/j.btre.2019.e00377

Islam M.R., Akash S., Jony M.H., Alam M.N., Nowrin F.T., Rahman M.M., Thiruvengadam M. Exploring the potential function of trace elements in human health: a therapeutic perspective. Mol. Cell Biochem., 2023, vol. 478, pp. 2141-2171. https://doi.org/10.1007/s11010-022-04638-3

Feng R., Wei C., Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot., 2013, vol. 87, pp. 58-68. https://doi.org/10.1016/j.envexpbot.2012.09.002

Ferro C., Florindo H.F., Santos H.A. Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Adv. Healthc. Mater., 2021, vol. 10 (16), 2100598. https://doi.org/10.1002/adhm.202100598

Hussain B., Lin Q., Hamid Y., Sanaullah M., Di L., Hashmi M.L.U.R., Khan M.B., He Z., Yang X. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ., 2020, vol. 712, 136497. https://doi.org/10.1016/j.scitotenv.2020.136497

Landa P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant Physiol. Biochem., 2021, vol. 161, pp. 12-24. https://doi.org/10.1016/j.plaphy.2021.01.039

Hussain B., Yin X., Lin Q., Hamid Y., Usman M., Hashmi M.L., Lu M., Imran Taqi M., He Z., Yang X.E. Mitigating cadmium exposure risk in rice with foliar nano-selenium: Investigations through Caco-2 human cell line in vivo bioavailability assay. Environ. Pollut., 2024, vol. 356, 124356. https://doi.org/10.1016/j.envpol.2024.124356

Farooq M.A., Islam F., Ayyaz A., Chen W., Noor Y., Hu W., Hannan F., Zhou W. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Pollut., 2022, vol. 292 (Pt B), 118473. https://doi.org/10.1016/j.envpol.2021.118473

El-Badri A.M., Batool M., Mohamed I.A.A., Wang Z., Wang C., Tabl K.M., Khatab A., Kuai J., Wang J., Wang B., Zhou G. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. Environ. Pollut., 2022, vol. 310, 119815. https://doi.org/10.1016/j.envpol.2022.119815

Zafar S., Hasnain Z., Danish S., Battaglia M.L., Fahad S., Ansari M.J., Alharbi S.A. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biol., 2024, vol. 24(1), 35. https://doi.org/10.1186/s12870-024-04720-6

Yin K., Bao Q., Li J., Wang M., Wang F., Sun B., Gong Y., Lian F.Molecular mechanisms of growth promotion and selenium enrichment in tomato plants by novel selenium-doped carbon quantum dots. Chemosphere, 2024, vol. 364, 143175. https://doi.org/10.1016/j.chemosphere.2024.143175

Desouky M.M., Abou-Saleh R.H., Moussa T.A.A., Fahmy H.M. Nano-chitosan-coated, greensynthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum: in vitro study. Sci. Rep., 2025, vol. 15, no. 1, 1004. https://doi.org/10.1038/s41598-024-79574-x

Taha N.A., Hamden S., Bayoumi Y.A., Elsakhawy T., El-Ramady H., Solberg S.Ø. Nanofungicides with selenium and silicon can boost the growth and yield of common bean (Phaseolus vulgaris L.) and control alternaria leaf spot disease. Microorganisms, 2023, vol. 11(3), 728. https://doi.org/10.3390/microorganisms11030728

Yuan J., Chen Y., Li H., Lu J., Zhao H., Liu M., Nechitaylo G.S., Glushchenko N.N. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci. Rep., 2018, vol. 8, 3228. https://doi.org/10.1038/s41598-017-18055-w

Abedi S., Iranbakhsh A., Oraghi Ardebili Z., Ebadi M. Nitric oxide and selenium nanoparticles confer changes in growth, metabolism, antioxidant machinery, gene expression, and flowering in chicory (Cichorium intybus L.): potential benefits and risk assessment. Environ. Sci. Pollut. Res. Int., 2021, vol. 28(3), pp. 3136-3148. https://doi.org/10.1007/s11356-020-10706-2

González-Lemus U., Medina-Pérez G., Espino-García J.J., Fernández-Luqueño F., CamposMontiel R., Almaraz-Buendía I., Reyes-Munguía A., Urrutia-Hernández T. Nutritional parameters, biomass production, and antioxidant activity of Festuca arundinacea Schreb. conditioned with selenium nanoparticles. Plants (Basel), 2022, vol. 11 (17), 2326. https://doi.org/10.3390/plants11172326

Song J., Yu S., Yang R., Xiao J., Liu J. Opportunities for the use of selenium nanoparticles in agriculture. NanoImpact, 2023, 100478. https://doi.org/10.1016/j.impact.2023.100478

Artem’ev A.V., Malysheva S.F., Gusarova N.K., Trofimov B.A. Rapid and convenient one-pot method for the preparation of alkali metal phosphinodiselenoates. Synthesis, 2010, vol. 14, pp. 2463- 2467

Rajaee Behbahani S., Iranbakhsh A., Ebadi M., Majd A., Ardebili Z. O. Red elemental selenium nanoparticles mediated substantial variations in growth, tissue differentiation, metabolism, gene transcription, epigenetic cytosine DNA methylation, and callogenesis in bittermelon (Momordica charantia); an in vitro experiment. PLoS One, 2020, vol. 15, no. 7, e0235556. https://doi.org/10.1371/journal.pone.0235556

Feng T., Chen S., Gao D., Liu G., Bai H., Li A., Peng L., Ren Z. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica, 2015, vol. 53, pp. 609-612. https://doi.org/10.1007/s11099-015-0118-1

Perfileva A.I., Nozhkina O.A., Ganenko T.V., Graskova I.A., Sukhov B.G., Artem’ev A.V., Krutovsky K.V. Selenium nanocomposites in natural matrices as potato recovery agent. Int. J. Mol. Sci., 2021a, vol. 22(9), 4576. https://doi.org/10.3390/ijms22094576

M.A.O. Dawood, M.F.E. Basuini, S. Yilmaz, H.M.R. Abdel-Latif, Z.A. Kari, M.K.A. Abdul Razab, H.A. Ahmed, M. Alagawany, M.S. Gewaily Selenium nanoparticles as a natural antioxidant and metabolic regulator in aquaculture: A Review. Antioxidants (Basel), 2021, vol. 10, no. 9, 1364. https://doi.org/10.3390/antiox10091364

Aloufi F.A., AbdElgawad H., Halawani R.F., Balkhyour M.A., Hassan A.H.A. Selenium nanoparticles induce coumarin metabolism and essential oil production in Trachyspermum ammi under future climate CO2 conditions. Plant Physiol. Biochem., 2024, vol. 211, 108705. https://doi.org/10.1016/j.plaphy.2024.108705

Yang R., Li Q., Zhou W., Yu S., Liu J. Speciation analysis of selenium nanoparti-cles and inorganic selenium species by dual-cloud point extraction and ICP-MS deter-mination. Anal. Chem., 2022, vol. 94(47), pp. 16328-16336. https://doi.org/10.1021/acs.analchem.2c03018

Sayed E.G., Desoukey S.F., Desouky A.F., Farag M.F., El-Kholy R.I., Azoz S.N. Synergistic influence of arbuscular mycorrhizal fungi inoculation with nanoparticle foliar application enhances chili (Capsicum annuum L.) antioxidant enzymes, anatomical characteristics, and productivity under cold-stress conditions. Plants (Basel), 2024, vol. 13(4), 517. https://doi.org/10.3390/plants13040517

Shebl A., Hassan A., Salama D.M., Abd El-Aziz M.E., Abd Elwahed M.S. Template-free microwave-assisted hydrothermal synthesis of manganese zinc ferrite as a nanofertilizer for squash plant (Cucurbita pepo L). Heliyon, 2020, vol. 6, e03596. https://doi.org/10.1016/j.heliyon.2020.e03596

Khan Z., Thounaojam T.C., Chowdhury D., Upadhyaya H. The role of selenium and nano selenium on physiological responses in plant: a review. Plant Growth Regul., 2023, vol. 100(2), pp. 409-433. https://doi.org/10.1007/s10725-023-00988-0

Thiruvengadam M., Chi H.Y., Kim S.H. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. Plant Physiol. Biochem., 2024, vol. 207, 108370. https://doi.org/10.1016/j.plaphy.2024.108370

Feng R., Wang L., Yang J., Zhao P., Zhu Y., Li Y., Yu Y., Liu H., Rensing C., Wu Z., Ni R., Zheng S. Underlying mechanisms responsible for restriction of uptake and translocation of heavy metals (metalloids) by selenium via root application in plants. J. Hazard Mater., 2021, vol. 15, p. 402. https://doi.org/10.1016/j.jhazmat.2020.123570

Bano I., Skalickova S., Sajjad H., Skladanka J., Horky P. Uses of selenium nanoparticles in the plant production. Agronomy, 2021, vol. 11(11), 2229. https://doi.org/10.3390/agronomy11112229


Full text (russian)