«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2023. Vol 46

Basic Nervous Processes – Excitation and Inhibition as Adaptive Reactions: A Review. 1. Critical Analysis of the Evolution of Theories about Basic Nervous Processes and Evidence of the Dependence of the Inhibitory Response of Neurons on Their Current Adaptive State

Author(s)
S. E. Murik
Abstract
In the work is criticized the paradigm about excitation and inhibition as the main nervous processes caused by the activity of specific excitatory and inhibitory systems. Analysis of the literature shows that the currently in neurophysiology dominant approach, justifying the existence of such systems, relies mainly on facts obtained in vitro, which are far from normal for the existence of nerve cells. Literature data are presented that indicate the dependence of the nature of the neuron response on its current adaptive (biological) state and the cytotoxicity of the neurotransmitter. In particular, in the review (part 1) it is shown that in response to the action of GABA (less toxic than neurotransmitter glutamate), brain neurons in both good (in vivo) and relatively bad (which is often in vitro) vital state will respond by hyperpolarizing postsynaptic potential (HPSP), either without excitation – the phenomenon of hyperpolarizational inhibition, or with the generation of nerve impulses, by posthyperpolarization recoil mechanism. In very poor living conditions (in vivo or in vitro), the neuronal response to GABA will always be a depolarizing postsynaptic potential (DPSP) with or without generation of action potentials (AP).
About the Authors
Murik Sergey Eduardovich, Candidate of Science (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: sergey_murik@mail.ru
For citation
Murik S. E. Basic Nervous Processes – Excitation and Inhibition as Adaptive Reactions: A Review. 1. Critical Analysis of the Evolution of Theories about Basic Nervous Processes and Evidence of the Dependence of the Inhibitory Response of Neurons on Their Current Adaptive State. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2023, vol. 46, pp. 44-75. https://doi.org/10.26516/2073-3372.2023.46.44 (in Russian)
Keywords
main nervous processes, excitation, inhibition, inhibitory postsynaptic potential (IPSP), exciting postsynaptic potential (EPSP), hyperpolarizing postsynaptic potential (HPSP), depolarizing postsynaptic potential (DPSP), membrane potential, depolarization, hyperpolarization, adaptive state, functional state, neuron.
UDC
612.82(2)(812)+577.3
DOI
https://doi.org/10.26516/2073-3372.2023.46.44
References

Averbah M.S. K istorii ucheniya ob akkomodatsii [To the history of the doctrine of accommodation]. Bull. Leningrad Univ., 1948, no. 7, pp. 69-78. (in Russian)

Anohin P. K. Uslovnoe tormozhenie kak problema fiziologii [Conditional inhibition as a physiology problem]. Izbrannye Trudy [Selected works]. Moscow, Nauka Publ., 1979, pp. 383-416. (in Russian)

Breiz'e M. Elektricheskaya aktivnost' nervnoi sistemy [Electrical activity of the nervous system]. Moscow, Inostrannaya literatura Publ., 1955, 216 p. (in Russian)

Vvedenskii N.E. Vozbuzhdenie, tormozhenie i narkoz [Excitation, inhibition and narcosis]. St.-Petersb., M.M. Stasyulevich Publ., 1901, 110 p. (in Russian)

Werigo B.F. K voprosu o dejstvii na nerv galvanicheskogo toka preryvistogo i nepreryvnogo. (Popytka ob"yasneniya fiziologicheskih yavlenij elektrotona) [To the question of the effect on the nerve of the intermittent and continuous galvanic current. (Attempt to explain the physiological phenomena of electrotone)]. St.-Petersb., M.M. Stasyulevich Publ., 1888. 338 p. (in Russian)

Voronin L.G. Fiziologiya vyssheij nervnoi deyatelnosti [Physiology of higher nervous activity]. Moscow, Vysshaya Shkola Publ., 1979, 312 p. (in Russian)

Deich S. Modeli nervnoi sistemy [Models of the nervous system]. Moscow, Mir Publ., 1970, 325 с. (in Russian)

Iversen L. Khimiya mozga [Chemistry of brain]. Mozg [The brain]. Moscow, Mir Publ., 1984, p. 141-165. (in Russian)

Kondrashova M.N. K biokhimicheskoi kharakteristike parabioticheskogo protsessa [To the biochemical characterization of the parabiotic process]. Bull. Exp. Biol. Med., 1954, vol. 37, pp. 1-40. (in Russian)

Konorski Yu. Integrativnaya deyatelnost mozga [Integrative Activity of the Brain]. Moscow, Mir Publ., 1970, 412 p. (in Russian)

Kostyuk P. G., Kryshtal' O. A., Pidoplichko V. I. Elektrogennyi natrievi nasos i svyazannye s nim izmeneniya provodimosti poverkhnostnoi membrany neironov [Electrogenic sodium pump and associated changes in neuronal surface membrane conductivity]. Biophysics, 1972, vol. 17, no. 6. pp. 1048-1054. (in Russian)

Kostyuk P.G., Kryshtal O.A. Mekhanizmy elektricheskoi vozbudimosti nervnoi kletki [Mechanisms of electrical excitability of a nerve cell]. Moscow, Nauka Publ., 1981, 204 p. (in Russian)

Murik S.E. O funktsional’nom sostoyanii neironov golovnogo mozga [On the functional state of brain neurons]. Bull. East Siberian SB RAMS, 2003, no. 7, pp. 51-53. (in Russian)

Murik S.E. Obshchaya shema adaptatsii nervnykh kletok: novyi vzglyad [A general scheme of the nervous cells adaptation: a new sight]. Adaptatsionnye strategii zhivykh system / Mezhdistsiplinarnaya nauchnaya konferentsiya [Adaptive Strategies of Living Systems: Interdiscipl. Conf. Novy Svet, Crimea, Ukraine]. Kiev, Mavis Publ., 2012, 82 p. (in Russian)

Murik S.E. Psikhologiya i psikhofiziologiya funktsionalnykh sostoyanii cheloveka [Psychology and psychophysiology of human functional states]. Saarbrȕcken, Lap Lambert Publ., 2013, 310 p. (in Russian)

Ushakov B.P., Averbah M.S., Suzdalskaya I.P., Troshina V.P., Cherepanova T.N. O parabioticheskoj prirode fiziologicheskogo elektrotona [On the parabiotic nature of physiological electrotone]. Russ. J. Physiol., 1953, vol. 34, no. 2, pp. 218-224. (in Russian)

Ochs S. Osnovy neirofiziologii [Elements of neurophysiology]. Moscow, Mir Publ., 1969, 448 p. (in Russian)

Nicholls J., Martin A., Wallace B., Fuchs P. Ot neirona k mozgu [From neuron to brain]. Moscow, URSS Publ., 2022, 684 p. (in Russian)

Pavlov I.P. Izbrannye proizvedeniya [Selected works]. Moscow, Gospolitizdat Publ., 1951, 583 p. (in Russian)

Pribram K. Yazyki mozga: eksperimentalnye paradoksy i printsipy neiropsikhologii [Languages of the brain: experimental paradoxes and principles in neuropsychology]. Moscow, Librokom Publ., 2009, 463 p. (in Russian)

Rodinskii A.G., Demchenko T.V., Romanenko L.A. Mediatornye i metabolicheskie svoistva GAMK v nervnoi sisteme (obzor literatury) [Mediator and metabolic properties of GABA in the nervous system (literature review)]. Bull. Probl. Biol. Med., 2014, vol. 3(109), is. 2, pp. 38-44. (in Russian)

Sechenov I.M. Issledovanie centrov, zaderzhivayushchih otrazhennye dvizheniya v mozgu lyagushki [Investigation of the centers that delay reflected movements in the frog brain]. Medic. Bull., 1863, no. 1, 2, 3. (in Russian)

Sechenov I.M. Izbrannye proizvedeniya [Selected works]. Moscow, Uchpedgiz Publ., 1953, 335 p. (in Russian)

Sokolov E.N., Vatkyavichus G.G. Neirointellekt: ot neirona k neirokomp'yuteru [The neurointelligence: from neuron – towards neurocomputer]. Moscow, Nauka Publ., 1989, 238 p. (in Russian)

Somjen J. Kodirovanie sensornoi informatsii v nervnoi sisteme mlekopitayushchikh [Sensory coding in the mammalian nervous system]. Moscow, Mir Publ., 1975, 415 p. (in Russian)

Hodorov B.I. Vliyanie tsyanidov na vozbudimost i akkomodaciyu normalnogo i otravlennogo monoiodacetatom nerva [Effect of cyanides on the excitability and accommodation of normal and monoiodoacetate-poisoned nerve]. Bull. Exp. Biol. Med., 1950а, vol. 29, no. 6, p. 425.

Hodorov B.I. O vliyanii hloristogo kaliya na vozbudimost i akkomodaciyu nerva lyagushki [On the effect of potassium chloride on the excitability and accommodation of the frog nerve]. Bull. Exp. Biol. Med., 1950б, vol. 29, no. 5, p. 339. (in Russian)

Hodorov B.I. O kazhushchihsya i istinnyh izmeneniyah vozbudimosti nerva na polyusah postoyannogo toka [On apparent and true changes in the excitability of the nerve at the poles of direct current]. Bull. Exp. Biol. Med., 1950в, vol. 29, no. 4, p. 272. (in Russian)

Hodorov B. Problema vozbudimosti [Problem of excitability]. St.-Petersb., Meditsyna Publ., 1969. 301 p.

Schade J.P., Ford D.H. Osnovy nevrologii [Basic neurology]. Moscow, Mir Publ., 1976, 351 p. (in Russian)

Schmidt R.F. Mezhkletochnaya peredacha vozbuzhdeniya [Intercellular transmission of excitation]. Fiziologiya cheloveka [Human Physiology in 4 vols.]. Moscow, Mir Publ., 1985, vol. 1, pp. 78-106. (in Russian)

Eccles J.C. Tormoznye puti tsentral'noi nervnoi sistemy [The inhibitory pathways of the central nervous system]. Moscow, Mir Publ., 1971, 168 p. (in Russian)

Niyonambaza S.D., Kumar P., Xing P., Mathault J., De Koninck P., Boisselier E., Boukadoum M., Miled A. A Review of Neurotransmitters Sensing Methods for Neuro-Engineering Research. Appl. Sci., 2019, vol. 9, is. 21, 4719.https://doi.org/10.3390/app9214719

Alger B.E., Nicoll R.A. GABA-mediated biphasic inhibitory responses in hippocampus. Nature, 1979, no. 281, pp. 315–317. https://doi.org/10.1038/281315a0

Alvarez F.J., Benito-Gonzalez A., Siembab V.C. Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Ann. N. Y. Acad. Sci., 2013, vol. 1279, is. 1, pp. 22-31. https://doi.org/10.1111/nyas.12084

Ben Ari Y. Excitatory actions of gaba during development: the nature of the nurture. J. Neurosci., 2002, vol. 3, no. 9, pp. 728-739. https://doi.org/10.1038/nrn920

Pallud J., Le Van Quyen M., Bielle F., Pellegrino Ch., Varlet P., Labussiere M., Cresto N., Dieme M.-J., Baulac M., Duyckaerts Ch., Kourdougli N., Chazal G., Devaux B., Rivera C., Miles R., Capelle L., Huberfeld G. Cortical GABAergic excitation contributes to epileptic activities around human glioma. Sci. Transl. Med., 2014, vol. 6, no. 244, pp. 244-259.https://doi.org/10.1126/scitranslmed.3008065

Crawford J.M., Curtis D.R. The excitation and depression of mammalian cortical neurons by amino acids. Brit. J. Pharmacol., 1964, vol. 23, pp. 313-329. https://doi.org/10.1111/j.1476-5381.1964.tb01589.x

Delpire E. Cation-Chloride Cotransporters in Neuronal Communication. News Physiol. Sci., 2000, vol. 15, no. 6, pp. 309-312. https://doi.org/10.1152/physiologyonline.2000.15.6.309

Eccles J.C. The electrophysiological properties of the motoneurone. Cold Spring Harbor Symposia on Quantitative Biology. 1952, vol.17, pp. 175-183.

Eccles J.C. The Physiology of Synapses. Springer-Verlag, 1964, 316 p.https://doi.org/10.1007/978-3-642-64950-9

Eccles J.C., Fatt P., Koketsu K. Cholinergic and inhibitory synapses in a pathway from motoraxon collaterals to motoneurones. J. Physiol., 1954, vol. 126, is. 3, pp. 524-562.https://doi.org/10.1113/jphysiol.1954.sp005226

Holmgren C.D., Mukhtarov M., Malkov A.E., Popova I.Y., Bregestovski P., Zilberter Y. Energy substrate availability as a determinant of neuronal resting potential, GABA signaling and spontaneous network activity in the neonatal cortex in vitro. J. Neurochem., 2010, vol. 112, is. 4, pp. 900-912. https://doi.org/10.1111/j.1471-4159.2009.06506.x

Owens D.F., Boyce L.H., Davis M.B., Kriegstein A.R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings. J. Neurosci., 1996, vol. 16, no. 20, pp. 6414-6423. https://doi.org/10.1523/JNEUROSCI.16-20-06414.1996

Rheims S., Holmgren C.D., Chazal G., Mulder J., Harkany T., Zilberter T., Zilberter Y. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies. J. Neurochem., 2009, vol. 110, is. 4, pp. 1330-1338. https://doi.org/10.1111/j.1471-4159.2009.06230.x

Wagner S., Castel M., Gainer H., Yarom Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature, 1997, vol. 387, no. 6633, pp. 598-603.https://doi.org/10.1038/42468

Ben Ari Y., Gaiarsa J.-L., Tyzio R., Khazipov R. GABA: A Pioneer Transmitter That Excites Immature Neurons and Generates Primitive Oscillations. Physiol. Rev., 2007, vol. 87, no. 4, pp. 1215-1284.https://doi.org/10.1152/physrev.00017.2006

Ganguly K., Schinder A.F., Wong S.T. GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell, 2001, vol. 105, no. 4, pp. 521-532. https://doi.org/10.1016/s0092-8674(01)00341-5

Gascon E., Klauser P., Kiss J.Z. Potentially toxic effects of anaesthetics on the developing central nervous system. Eur. J. Anaesthesiol., 2007, vol. 24, no. 3, pp. 213-224.https://doi.org/10.1017/S0265021506002365

Gasser S.H. The Control of Excitation in the Nervous System. Bull. N. Y. Acad. Med., 1937, vol. 13, no. 6, pp. 324-348.

Ivanov A.I., Malkov A.E., Waseem T., Mukhtarov M., Buldakova S., Gubkina O., Zilberter M., Zilberter Y. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices. J. Cerebr. Blood Flow Metabol., 2014, vol. 34, no. 3, pp. 397-407.https://doi.org/10.1038/jcbfm.2013.222

Gulledge A.T., Stuart G.J. Excitatory Actions of GABA in the Cortex. Neuron, 2003, vol. 37, is. 2, pp. 299-309. https://doi.org/10.1016/s0896-6273(02)01146-7

Hill A.V. Excitation and accommodation in nerve. Proc. Roy. Soc., Ser. B, 1936, vol. 119, is. 814, pp. 305-355. https://doi.org/10.1098/RSPB.1936.0012

Hill A.V. The intensity-duration relation for nerve excitation. J. Physiol., 1935, vol. 83, pp. 30.

Hodgkin A.L., Huxley A.F. Resting and action potentials in single nerve fibers. J. Physiol., 1945, vol. 104, is. 2, pp. 176-195. https://doi.org/10.1113/jphysiol.1945.sp004114

Hubner C., Stein V. Disruption of KCC2 reveals an essential role of K-Cl-cotransport already in early synaptic inhibition. Neuron, 2001, vol. 30, no. 2, pp. 515-524. https://doi.org/10.1016/s0896-6273(01)00297-5

Jasper H.H. Functional properties of the thalamic reticular system. Brain Mechanisms and Consciousness. J.F. Delafresnaye (ed.). Blackwell, 1954, pp. 374-401.

Kandel E.R., Spencer W.A., Brinley F.J. Electrophysiology of hippocampal neurons. J. Nerophysiol., 1961, vol. 24, is. 3, pp. 225-242. https://doi.org/10.1152/jn.1961.24.3.225

Kato G. The Microphysiology of Nerve. Tokyo, Maruzen Company, 1934, 139 p.

Katz B. Nerve, Muscle and Synapse. New York, McGraw-Hill, 1966, 193 p.

Konorski J. Conditioned reflexes and neuron organization. Cambridge Univ. Press, 1948, 267 p.

Konorski J. Mechanisms of learning. Sympos. Soc. Experim. Biol. Vol. 4. Cambridge Univ. Press, 1950.

Martina M., Royer S., Pare D. Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala. J. Neurophysiol., 2001, vol. 86, is. 6, pp. 2887-2895.https://doi.org/10.1152/jn.2001.86.6.2887

Jentsch T.J., Stein V., Weinreich F., Zdebik A.A. Molecular structure and physiological function of chloride channels. Physiol. Rev., 2002, vol. 82, no. 2, pp. 503-568. https://doi.org/10.1152/physrev.00029.2001

Morgan C.T. Physiological Psychology. McGraw-Hill, 1943, 623 pp.

Obrietan K., Pol F.N. GABA neurotransmission in the hypothalamus: developmental transition from Ca2+ elevating to depressing. J. Neurosci., 1995, vol. 15, no. 7, pp. 5065-5077.https://doi.org/10.1523/JNEUROSCI.15-07-05065.1995

Okun M., Lampl I. Balance of Excitation and Inhibition. Scholarpedia, 2009, vol. 4, no. 8., 7467. https://doi.org/10.4249/scholarpedia.7467

Pflüger E. Physiologie des Electrotonus. Berlin, 1859, 502 p.

Phillips C.G. Intracellular records from Betz cells in the cat. Quart. J. Exp. Physiol., 1956a, vol 41, is. 1, pp. 58-69. https://doi.org/10.1113/expphysiol.1956.sp001163

Phillips C.G. Cortical motor threshold and the thresholds and distribution of excited Betz cells in the cat. Quart. J. Exp. Physiol., 1956b, vol. 41, is. 1, pp. 70-84. https://doi.org/10.1113/expphysiol.1956.sp001164

Pol A.N., Obrietan K., Chen G. Excitatory actions of GABA after neuronal trauma. J. Neurosci., 1996, vol. 16, no. 13, pp. 4283-4292. https://doi.org/10.1523/JNEUROSCI.16-13-04283.1996

Reichling D. B., Kyrozis A., Wang J. Mechanisms of GABA and glycine depolarizationinduced calcium transients in rat dorsal horn neurons. J. Physiol., 1994, vol. 476, no. 3, pp. 411-421.https://doi.org/10.1113/jphysiol.1994.sp020142

Renshaw B. Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J. Neurophysiol., 1941, vol. 4, pp. 167-183.https://doi.org/10.1152/jn.1941.4.2.167

Rivera C., Voipio J., Kaila K. Two developmental switches in GABAergic signalling. J. Physiol., 2005. Vol. 562, N. 1. P. 27-36. https://doi.org/10.1113/jphysiol.2004.077495

Sherrington Ch. S. The Integrative Action of the Nervous System. New York, Scribner and Sons, 1906. https://doi.org/10.2307/2010953

Rekling J.C., Funk G.D., Bayliss D.A., Dong X.W., Feldman J.L. Synaptic control of motoneuronal excitability. Physiological Reviews, 2000, vol. 80, no. 2, pp. 767-852. https://doi.org/10.1152/physrev.2000.80.2.767

Staley K.J., Soldo B.L., Proctor W.R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science, 1995, vol. 269, no. 5226, pp. 977-981.https://doi.org/10.1126/science.7638623

Andersen P., Dingledine R., Gjerstad L., Langmoen I.A., Laursen A.M. Two different responses of hippocampal pyramidal cells to application of GABA. J. Physiol., 1980, vol. 305, is. 1, pp. 279-296. https://doi.org/10.1113/jphysiol.1980.sp013363

Wang J. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur. J. Neurosci., 1994, vol. 6, no. 8, pp. 1275-1280. https://doi.org/10.1111/j.1460-9568.1994.tb00317.x

Werigo B. Die sekundären Erregbarkeitsänderungen an der Kathodes des polarisierten Nerven. Pflüg. Arch., 1883, vol. 31, pp. 417-478.

Zilberter Y., Zilberter T., Bregestovski P. Neuronal activity in vitro and the in vivo reality: the role of energy homeostasis. Trends Pharmacol. Sci., 2010, vol. 31, no. 9, pp. 394-401.https://doi.org/10.1016/j.tips.2010.06.005


Full text (russian)