«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2023. Vol 45

Effect of Silicon-Containing Components of Nutrient Medium on the Synthesis of Exopolysaccharides by Silicate Bacteria

Author(s)
L. A. Ulakhanova, S. V. Gomboeva, V. Zh. Tsyrenov
Abstract
Silicate bacteria have a wide biotechnological potential, they produce a large number of biologically active substances: enzymes that destroy silicates; fungicidal and antimicrobial compounds; phytohormones and exopolysaccharides (EPS). At the same time, they are able to use silicon-containing minerals as a source of additional energy. The literature provides studies on the destruction of polysilicon compounds by silicate bacteria of the speciessilicate bacteria. They are capable of destroying quartz, aluminosilicates with the release of Si, K and other elements. There is also information about stimulating the reproduction of silicate bacteria when growing on mineral media with the addition of silicon-containing components. At the same time, the influence of polysilicon compounds on the synthesis of exopolysaccharides by silicate bacteria is not considered. The exoglycans released by them are used in various industries: mining, oil production, pharmaceutical, food and cosmetic. The studies used isolated pure cultures of silicate bacteria, the biosynthetic activity of which was compared with strains of Paenibacillus mucilaginosus B7519 and B4901 (VKPM, GosNIIgenetics). Bacteria were isolated from the soils and sand of the Baikal region. The influence of silicon-containing components (bentonite, quartz sand) of the nutrient medium on crop growth and EPS synthesis was investigated. The positive effect of silicate minerals on the growth of isolated strains and museum cultures of P. mucilaginosus has been confirmed. Strain B-4901 had the highest amount of CFU/ml on nutrient media with both quartz sand and bentonite. The influence of siliconcontaining components on the EPS yield of the studied microorganisms has been established. The highest EPS yield was observed in the VSGUTU-2 strain on a nutrient medium with the addition of quartz sand, and the B7519 strain had the best synthesis on a medium with the addition of bentonite. The VSGUTU-1 strain showed the same yield of exopolysaccharides on two variants of media with silicon-containing components, whereas the amount of EPS in the B4901 strain did not increase with the addition of bentonite and quartz sand. The lowest EPS yields were on nutrient media without the addition of a silicon source.
About the Authors

Ulakhanova Lyudmila Alekseevna, Lecturer, East Siberian State University of Technology and Management, 42B, building 4, Klyuchevskaya st., Ulan-Ude, 670013, Russian Federation, e-mail: ulahanova@mail.ru

Gomboeva Sayana Vladimirovna, Candidate of Sciences (Biology), Associate Professor, East Siberian State University of Technology and Management, 42B, building 4, Klyuchevskaya st., Ulan-Ude, 670013, Russian Federation, e-mail: sv2@rambler.ru

Tsyrenov Vladimir Zhigzhitovich, Doctor of Sciences (Biology), Professor, East Siberian State University of Technology and Management, 42B, building 4, Klyuchevskaya st., Ulan-Ude, 670013, Russian Federation, e-mail: vtsyrenov@gmail.com

For citation
Ulakhanova L.A., Gomboeva S.V., Tsyrenov V.Zh. Effect of Silicon-Containing Components of Nutrient Medium on the Synthesis of Exopolysaccharides by Silicate Bacteria. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2023, vol. 45, pp. 46-57. https://doi.org/10.26516/2073-3372.2023.45.46 (in Russian)
Keywords
silicate bacteria, Paenibacillus mucilaginosus, silicon-containing components, exopolysaccharides, biosynthesis.
UDC
57.044
DOI
https://doi.org/10.26516/2073-3372.2023.45.46
References

Aleksandrov V.G. Silikatnye bakterii [Silicate bacteria]. Moscow, Selkhozgiz Publ., 1953, 116 p. (in Russian)

Vasyuchkov Yu.F. Biotekhnologiya gornykh rabot [Biotechnology of mining operations]. Moscow, Gornaya kniga Publ., 2011, 351 p. (in Russian)

Voronkov M.G., Kuznetsov I.G. Kremnii v zhivoi prirode [Silicon in living nature]. Novosibirsk, Nauka Publ., 1984, 157 p. (in Russian)

Golokhvast K.S. Vzaimodeistvie organizmov s mineralami [Interaction of organisms with minerals]. Vladivostok, FESTU Publ., 2010, 115 p. (in Russian)

Kozlov A.V., Kulikova A.H., Uromova I.P. Aktivnost' silikatnykh bakterii i Bacillus mucilaginosus v dernovo-podzolistoi pochve v otnoshenii degradatsii diatomita Inzenskogo mestorozhdeniya [Activity of silicate bacteria and Bacillus mucilaginosus in sod-podzolic soil in relation to the degradation of diatomite of the Inzen deposit]. Bull. Irkutsk St. Univ. Ser. Biol. Ecol., 2019, vol.29, pp. 3-14. (in Russian). https://doi.org/10.26516/2073-3372.2019.29.3

Kozlov A.V., Kulikova A.H., Uromova I.P. Produkty vyshchelachivaniya v bakterial'noi sisteme «Poroda-kul'tura» pri biokhimicheskoi degradatsii silikatnymi bakteriyami diatomita, tseolita i bentonita [Leaching products in the bacterial system “Breed-culture” during biochemical degradation by silicate bacteria of diatomite, zeolite and bentonite]. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2017, vol. 19, no. 2-2, pp. 281-288. (in Russian)

Netrusov A.I., Egorova M.A., Zakharchuk L.M. Praktikum po mikrobiologii [Microbiology workshop]. Moscow, Academia Publ., 2005. 603 p. (in Russian)

Novokuptsev N.V. Optimizatsiya uslovii kul'tivirovaniya Azotobacter vinelandii D-08 dlya uvelicheniya vykhoda ekzopolisakharida [Optimization of cultivation conditions of Azotobacter vinelandii D-08 to increase the yield of exopolysaccharide]. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2016, vol. 16, no. 2, pp. 164-168. (in Russian)

Nyanikova G.G., Vinogradov E.Y. Bacillus mucilaginosus. Perspektivy ispolzovaniya [Bacillus mucilaginosus. Prospects of use]. St.-Petersb., St. Petersb. St. Univ. Publ., 2000, 124 p. (in Russian)

Nyanikova G.G. Biosintez i izuchenie mikrobnykh polisakharidov: metodicheskie ukazaniya k laboratornym rabotam [Biosynthesis and study of microbial polysaccharides: guidelines for laboratory work]. St. Petersb., St. Petersb. St. Technol. Univ. Publ., 2006, 22 p. (in Russian)

Ha T.Z., Kanarsky A.V., Kanarskaya Z.A., Shcherbakov A.V., Shcherbakova E.N. Perspektiva primeneniya bakterii roda Paenibacillus v promyshlennoi biotekhnologii dlya polucheniya biopreparatov selskokhozyaistvennogo naznacheniya [Prospect of using bacteria of the genus Paenibacillus in industrial biotechnology for the production of biological products for agricultural purposes]. Vestnik of Volga St. Univ. Technol. Ser. Forest. Ecology. Nature Management, 2020, no. 3, p. 47. (in Russian). https://doi.org/10.25686/2306-2827.2020.3.74

Platova R.A., Ryzhakova A.V., Platov Y.T. Innovative ceramic biotechnology: main directions, methods of its application and advantages [Innovatsionnaya keramicheskaya biotekhnologiya:osnovnye napravleniya, sposoby ee primeneniya i preimushchestva]. Vestnik of the Plekhanov Russian University of Economics, 2017, no. 1 (91), pp. 171-178. (in Russian)

Telyakov N.M., Saltykova S.N., Purevdash M. Izuchenie vozdeistviya bakterial'nogo rastvora na sul'fidnye medno-molibdenovye rudy [Studying the effects of bacterial solution on sulfide coppermolybdenum ores]. J. Mining Inst., 2011, vol. 192, pp. 54-57. (in Russian)

Fokina N.A., Uryadova G.T., Karpunina L.V. Influence of cultivation conditions on the production of Streptococcus thermophilus exopolysaccharide [Vliyanie uslovii kultivirovaniya na produktsiyu ekzopolisakharida Streptococcus thermophilus]. Izvestiya of Saratov University. Chemistry. Biology. Ecology, 2018, vol. 18, no. 2, pp. 179-181. https://doi.org/10.18500/1816-9775-2018-18-2-179-181 (in Russian)

Yakhontova L.K., Zvereva V.P. Osnovy mineralogii gipergeneza [Fundamentals of hypergenesis mineralogy]. Vladivostok, Dalnauka Publ., 2000, 331 p. (in Russian)

Zhang Zh., Lian B., Hou W., Chen M., Li X., Li Y. Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase. Afr. J. Microbiol., 2011, vol. 5, no. 2, pp. 106-119.

Bin L., Smith D.L., Ping F. Application and mechanism of silicate bacteria in agriculture and industry. Guizhou Sci., 2000, vol. 18, pp. 43-53.

Lv Y., Li J., Ye H., Du D., Sun P., Ma M., Zhang T.C. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: Impact of silicate mineral structures. Chemosphere, 2020, vol. 256, 127043.https://doi.org/10.1016/j.chemosphere.2020.127043

Grady E.N., McDonald J., Liu L., Richman A., Ze-Chun Yu. Current knowledge and perspectives of Paenibacillus: a review. Microb. Cell Fact., 2016, vol. 15. 203. https://doi.org/10.1186/s12934-016-0603-7

Liu W., Xu X., Wu X. Yang Q., Luo Y., Christie P. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environ. Geochem. Health., 2006, vol. 28, pp. 133-140 https://doi.org/10.1007/s10653-005-9022-0

Naseem H., Ahsan M., Shahid M. A., Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J. Basic Microbiol., 2018, vol. 58, is. 12, p. 1009. https://doi.org/10.1002/jobm.201800309

Raturi G., Sharma Y., Rana V., Thakral V., Myaka B., Salvi P., Singh M., Dhar H., Deshmukh R. Exploration of silicate solubilizing bacteria for sustainable agriculture and silicon biogeochemical cycle. Plant Physiol. Biochem., 2021, vol. 166, pp. 827-838. https://doi.org/10.1016/j.plaphy.2021.06.039

Knirel Y., Van Calsteren M.-R. Bacterial Exopolysaccharides. Comprehensive Glycoscience, 2021, vol. 1, pp. 21-95. https://doi.org/10.1016/B978-0-12-819475-1.00005-5

Liang T.-W., Wang S.-L. Recent Advances in Exopolysaccharides from Paenibacillus spp.: Production, Isolation, Structure, and Bioactivities. Marine Drugs, 2015, vol. 13, no. 4, pp. 1847-1863.https://doi.org/10.3390/md13041847

Liang T.-W., Tseng Sh.-Ch., Wang S.-L. Production and Characterization of Antioxidant Properties of Exopolysaccharide(s) from Paenibacillus mucilaginosus TKU032. Marine Drugs, 2016, vol.14, no. 2, p. 40. https://doi.org/10.3390/md14020040

Lian B., Chen Y., Zhao J., Teng H.H., Zhu L.J., Yuan S. Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Biores. Technol., 2008, vol. 99, is. 11, pp. 4825-4831.https://doi.org/10.1016/j.biortech.2007.09.045

One plant of colloid series bacillus N6 and its application. Patent CN № CN105950505B China,: appl. 20.05.2016, publ.11.06.2019. Nanjing Forestry University, Osman A. G. Study of some characteristics of silicate bacteria. J. Sci. Technol., 2009, vol. 10, no. 3, pp. 24-31.

Paenibacillus mucilaginosus and method for producing compound microorganism bacterium agent by utilizing same. Patent CN № CN103194410A China,: appl. 04.04.2013, publ. 10.07.2013. Li, Tseng, Chzao et.al. Hebei Institute of Microbiology.

Haiyang X., Li J., Wang L., Fu R., Cheng R. Wang Sh., Zhang J. Purification and characterization of a highly viscous polysaccharide produced by Paenibacillus strain. Eur. Polym. J., 2018, vol. 101, pp. 314-323. https://doi.org/10.1016/j.eurpolymj.2018.02.040


Full text (russian)