«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2022. Vol 41

Growth-Stimulating Activity Of Copper-Containing Nanocomposites In Natural Polymer Matrices

Author(s)
A. R. Kharasova, T. V. Lipchanskaya, O. A. Nozhkina, A. V. Sidorov, T. V. Konkova, A. I. Perfileva
Abstract
The biological activity of two chemically synthesized nanocomposites (NC) of copper(I) oxide (Cu2О) based on natural polymer matrices of arabinogalactan (AG) and starch (ST) was studied in order to develop a new growth stimulator for plants. The results of experiments on studying the effect of NC on the growth rates (length and weight of stems, biomass of roots) of soybean seedlings and the content of diene conjugates (DC) in the tissues of their stems, as well as on the growth of stems and the number of leaves, the biomass of the aerial parts of plants and roots of the potato variety “Lugovskoy” in vitro, infected with the causative agent of ring rot – the bacterium Clavibacter sepedonicus and controls, and the content of DC in the tissues of their leaves and roots. The results of the study of the growth-stimulating effect on plants of Cu2O/AG and Cu2O/ST showed that only NC Cu2O/AG has this effect. Microscopy of potato root tissues using fluorescent dyes showed that when processing potatoes with NC Cu2О /AG, its roots do not die, the cells remain viable. The effect of the nanocomposite copper oxide-starch Cu2O/ST on soybean seedlings was expressed in a decrease in the growth and weight of the stems, a neutral effect on the length and weight of the roots, and an increase in the content of DC in their tissues. The same kind of effect was also registered on microclonal potato plants. On the contrary, the nanocomposite of copper oxide – arabinogalactan Cu2O/AG stimulated an increase in the length and weight of the stems of soybean seedlings, as well as the biomass of roots and significantly reduced the level of DC in their tissues. A negative effect on the growth and development of potatoes, as well as the status of the redox system of potatoes, both infected with the Cms pathogen and free from infection, was not established: the level of DC in its tissues did not increase. The experiments performed indicate the prospects of using the nanocomposite copper oxide – arabinogalactan Cu2O/AG of arabinogalactan as a means for combating bacterial pathogens of agricultural crops.
About the Authors

Kharasova Anastasia Renatovna, Student, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: Nastya.Kharasova@yandex.ru

Lipchanskaya Tatiana Valeryevna, Student, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, e-mail: t20010305@gmail.com

Nozhkina Olga Aleksandrovna, Lead Engineer, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: smallolga@mail.ru

Sidorov Aleksandr Vladimirovich, Senior Lecturer, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., 664003, Irkutsk, Russian Federation, Engineer, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132 Lermontov str., Irkutsk, 664033, Russian Federation, e-mail: a_v_sidorov@mail.ru

Konkova Tatyana Vladimirovna, Candidate of Sciences (Chemistry), Research Scientist, V.V. Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, 3, Institutskaya st., 630090, Novosibirsk, Russian Federation, e-mail: Konbuivol_2@yahoo.com

Perfileva Alla Innokent'evna, Candidate of Sciences (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: alla.light@mail.ru

For citation
Kharasova A.R., Lipchanskaya T.V., Nozhkina O.A., Sidorov A.V., Konkova T.V., Perfileva A.I. GrowthStimulating Activity of Copper-Containing Nanocomposites in Natural Polymer Matrices. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2022, vol. 41, pp. 19-34. https://doi.org/10.26516/2073-3372.2022.41.19 (in Russian)
Keywords
arabinogalactan, starch, nanoparticles, copper(I) oxide, nanocomposites, soy, potato, biometric characteristics, diene conjugates.
UDC
577.2
DOI
https://doi.org/10.26516/2073-3372.2022.41.19
References

Dykman L.A., Bogatyrev V.A., Sokolov O.I., Plotnikov V.K., Repko N.V., Salfetnikov A.A. Vzaimodeistvie nanochastits zolota, serebra i magniya s rastitelnymi ob"ektami. Sci. J. Kuban St. Agrar. Univ., 2016, no. 6, pp. 675-705. (in Russian)

Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biologicheskikh membranakh. Moscow, Nauka Publ., 1972, 252 p. (in Russian)

Gusev A.A., Akimova O.A., Krutyakov Yu.A., Klimov A.I., Denisov A.N., Kuznetsov D.V., Godymchuk A.Yu., Ikhalainen E.S. Vliyanie vysokodispersnykh chastits razlichnoi prirody na rannie stadii ontogeneza rastenii rapsa (Brassica napus). Euras. Sci. J., 2013, no. 5, pp. 2-17. (in Russian)

Zelentsov S.V., Moshnenko E.V., Trunova M.V., Bubnova L.A., Budnikov E.N., Lukomets A.V., Savichenko V.G., Dorofeev N.V., Katysheva N.B., Pomortsev A.V. Kholodoustoichivyi sort soi severnogo ekotipa Sayana. Oil crops, 2021, is. 1 (185), pp. 95-102. (in Russian). https://doi.org/10.25230/2412-608X-2021-1-185-95-102

Compant S., Samad A., Faist H., Sessitsch A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res., 2019, vol. 19, pp. 29-37. https://doi.org/10.1016/j.jare.2019.03.004

Catalano P.N., Chaudhary R.G., Desimone M.F., Santo-Orihuela P.L. A survey on analytical methods for the characterization of green synthesized nanomaterials. Curr. Pharm. Biotechnol., 2021, vol. 22, no. 6, pp. 823-847. https://doi.org/10.2174/1389201022666210104122349

Abeyrathne E.D.N.S., Nam K.S., Dong U.A. Analytical methods for lipid oxidation and antioxidant capacity in food systems. Antioxidants, 2021, vol. 10, pp. 1587. https://doi.org/10.3390/antiox10101587

Saeedi M., Eslamifar M., Khezri K., Dizaj S.M. Applications of nanotechnology in drug delivery to the central nervous system. Biomed. Pharmacother., 2019, vol. 111, pp. 666-675. https://doi.org/10.1016/j.biopha.2018.12.133

Osdaghi E., Wolf J.M., Abachi H., Li X., Boer S.H., Ishimaru C.A. Bacterial ring rot of potato caused by Clavibacter sepedonicus: a successful example of defeating the enemy under international regulations. Mol. Plant. Pathol., 2022, vol. 23, no. 7, pp. 911-932. https://doi.org/10.1111/mpp.13191

Ye Y., Medina-Velo I.A., Cota-Ruiz K., Moreno-Olivas F., Gardea-Torresdey J.L. Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? Ecotoxicol. Environ. Saf., 2019, vol. 184, 109671. https://doi.org/10.1016/j.ecoenv.2019.109671

Chen F., Huang G. Preparation and immunological activity of polysaccharides and their derivatives. Int. J. Biol. Macromol., 2018, vol. 112, pp. 211-216. https://doi.org/10.1016/j.ijbiomac.2018.01.169

Guilger-Casagrande M., Bilesky-José N., Sousa B.T., Oliveira H.C., Fraceto L.F., Lima R. Effects of biogenic silver and iron nanoparticles on soybean seedlings (Glycine max). BMC Plant Biol., 2022, vol. 22, no. 1, 255. https://doi.org/10.1186/s12870-022-03638-1

Kaur G., Singh H.P., Batish D.R., Mahajan P., Kohli R.K., Rishi V. Exogenous nitric oxide (NO) interferes with lead (Pb)-induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoSONE, 2015, vol. 10, pp. 1-11. https://doi.org/10.1371/journal.pone.0138713

Fargašová A. Toxicity comparison of some possible toxic metals (Cd, Cu, Pb, Se, Zn) on young seedlings of Sinapis alba L. Plant Soil Environ., 2004, vol. 50, pp. 33-38. https://doi.org/10.17221/3639-PSE

Hussain F., Hadi F., Rongliang Q. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environ. Sci. Pollut. Res. Int., 2021, vol. 28, no. 26, pp. 34697–34713. https://doi.org/10.1007/s11356-021-13132-0

Ma Z.Q., Xu Y.C., Fan Z.J., Hou D.Y., Xu Q.Y. Impacts of cuprous oxide nanoparticles on wheat root morphology and genotoxicity. Ying Yong Sheng Tai Xue Bao, 2021, vol. 32, no. 3 https://doi.org/10.13287/j.1001-9332.202103.031 (in Chinese)

Klochkov S.G., Neganova M.E., Nikolenko V.N., Chen K., Somasundaram S.G., Kirkland C.E., Aliev G. Implications of nanotechnology for the treatment of cancer: recent advances. Semin. Cancer Biol., 2021, vol. 69, pp. 190-199. https://doi.org/10.1016/j.semcancer.2019.08.028

Serikbai A.T., Aitkulov A.M., Zeinidenov A.A., Pusz W. Influence of zinc nanoparticles on the development of sprouts of Avena Sativa and Pisum sativum plants. Bull. Karaganda Univ. Ser. Biol. Medic. Geogr., 2021, vol. 104, no. 4, pp. 78-84. https://doi.org/10.31489/2021BMG4/78-84

Hashemi S., Asrar Z., Pourseyedi S., Nadernejad N. Investigation of ZnO nanoparticles on proline, anthocyanin contents and photosynthetic pigments and lipid peroxidation in the soybean. IET Nanobiotechnol., 2019, vol. 13, no. 1, pp. 66-70. https://doi.org/10.1049/iet-nbt.2018.5212

Sarraf M., Vishwakarma K., Kumar V., Arif N., Das S., Johnson R., Janeeshma E., Puthur J.T., Aliniaeifard S., Chauhan D.K., Fujita M., Hasanuzzaman M. Metal/Metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms. Plants, 2022, vol. 11, no. 3, 316. https://doi.org/10.3390/plants11030316

Yuan J., Chen Y., Li H., Lu J., Zhao H., Liu M., Nechitaylo G.S., Glushchenko N.N. New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci. Rep., 2018, vol. 8, no. 1, 3228. https://doi.org/10.1038/s41598-017-18055-w

Burketová L., Martinec J., Siegel J., Macurková A., Maryska L., Valentová O. Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol. Adv., 2022, vol. 58. 107929. https://doi.org/10.1016/j.biotechadv.2022.107929

Prakash M., Gopalakrishnan N., Chung I. M. Evaluation of stress effects of copper oxide nanoparticles in Brassica napus L. Biotech., 2017, vol. 7, no. 293. https://doi.org/10.1007/s13205-017-0929-9

Natarajan D., Ye Z., Wang L., Ge L., Pathak J.L. Rare earth smart nanomaterials for bone tissue engineering and implantology: advances, challenges, and prospects. Bioeng. Transl. Med., 2021, vol. 7, no. 1, 10262. https://doi.org/10.1002/btm2.10262

Singh R.P., Handa R., Manchanda G. Nanoparticles in sustainable agriculture: an emerging opportunity. J. Control Release, 2021, vol. 329, pp. 1234-1248. https://doi.org/10.1016/j.jconrel.2020.10.051

Coman V., Oprea I., Leopold L.F., Vodnar D.C., Coman C. Soybean interaction with engineered nanomaterials: a literature review of recent data. Nanomaterials, 2019, vol. 9, 1248. https://doi.org/10.3390/nano9091248

Calvo V., González-Domínguez J.M., Benito A.M., Maser W.K. Synthesis and processing of nanomaterials mediated by living organisms. Angew. Chem. Int. Ed. Engl., 2022, vol. 61, no. 9, 202113286. https://doi.org/10.1002/anie.202113286

Perfileva A.I., Graskova I.A., Nozhkina O.A., Zabanova N.S., Sukhov B.G., Shkil N.N., Nefyodova E.V. The current aspects of using chemically synthesized compounds of silver nanoparticles in animal husbandry and agrochemistry. Nanotechnol. Russ., 2019, vol. 14, no. 9–10, pp. 489-496. https://doi.org/10.1134/S1995078019050112

Yamori W., Kogami H., Masuzawa T. Freezing tolerance in alpine plants as assessed by the FDA-staining method. Polar Biol., 2005, vol. 18, pp. 73-81.

Yan А., Chen Z. Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci., 2019, vol. 20, no. 5, 1003. https://doi.org/10.3390/ijms20051003

Kareem H.A., Saleem M.F., Saleem S., Rather S.A., Wani S.H., Siddiqui M.H., Alamri S., Kumar R., Gaikwad N.B., Guo Z., Niu J., Wang Q. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Front. Plant Sci., 2022, vol. 13, 842349. https://doi.org/10.3389/fpls.2022.842349

Dolmaa, G. Bayaraa B., Urantsetseg E., Ganzayaa G., Tserenkhand G., Regdel D., Aleksandrova G.P., Lesnichaya M.V., Sukhov B.G., Trofimov B.A. Silver nanobiocomposites based on humic substances as highly efficient stimulators of seed germination. Nanotechnol. Russ., 2018, vol. 13, no. 5-6, pp. 305-310.


Full text (russian)