«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2022. Vol 41

Investigation of the Effect of Detonation Nanodiamonds and their Conjugates with Doxorubicin and Dioxadet on the Mitochondrial Membrane

Author(s)
G. M. Berdichevskiy, L. V. Vasina, M. A. Galkin, V. V. Sharoyko, K. N. Semenov
Abstract
Targeted drug delivery is aimed at preventing drugs’ nonspecific distribution in different tissues. One of efficient ways for drug’s targeted delivery is using denonation nanodiamonds. These nanoparticles are an advantageous material for nanomedicine due to their low cost, biocompatibility, hardness and chemical stability. Majority of blood plasma proteins and blood cell surfaces are charged negatively. Therefore biocompatibility and long circulation lifetimes of carboxylated nanodiamonds can be partially attributed to their negative surface charge. The presence of different functional groups on nanodiamond surfaces enables their functionalization with a variety of therapeutic agents, including antitumour drugs. One of them is dioxadet, a derivative of symmetric triazine. It is becoming evident that mitochondria play crucial role in metastasis and chemoresistance of tumors, which makes them a very promising target for anticancer therapy. In particular, proton translocating F1Fo-ATPase/ATP synthase can be one of these targets. This enzyme is responsible for making the majority of ATP in the cell by oxidative phosphorylation. More than 300 natural and synthesized compounds are currently known to interact with or inhibit F1Fo, but a comparative study of their effects on energy metabolism has only recently started. In this work we estimated effects of the cytostatic drugs doxorubicin, dioxadet and their DND conjugates on the activity of F1Fo ATPase as well as on the membrane potential. Two model systems were employed: 1) E. coli F1Fo-ATPase reconstituted into phosphatidylcholine liposomes; 2) Pancreatic carcinoma cell line PANC1. It was found that the nanodiamonds and conjugates exhibited the same uncoupling effect, partially dissipating the proton gradient across the membrane of proteoliposomes containing F1Fo-ATPase. In addition, the nanodiamonds inhibited ATPase activity. In an experiment on the effect on the mitochondrial membrane potential (PANC 1 cell line), conjugates of nanodiamonds with doxorubicin demonstrated a more pronounced effect compared to doxorubicin, which may be due to a combination of the uncoupling effect of nanodiamonds and doxorubicin-dependent generation of reactive oxygen species. The data reported in this paper shed light on effect of the carboxylated nanodiamonds on the cellular bioenergetics. These findings are crucial for further development of nanodiamond-based targeted drug delivery systems, in particular decreasing their toxicity by selecting optimal strategies of nanodiamond synthesis as well as drug immobilization on their surfaces. The use of artificial models of natural membranes, along with cell cultures, is necessary for a deeper and more accurate understanding of the mechanism of action of cytostatics.
About the Authors

Berdichevskiy Grigory Mikhailovich, Undergraduate, Pavlov University, 6-8, Lev Tolstoy st., Saint-Petersburg, 197022, Russian Federation, e-mail: grishaberd@gmail.com

Vasina Lubov Vasilievna, Doctor of Sciences (Medicine), Head of Department, Pavlov University, 6-8, Lev Tolstoy st., Saint-Petersburg, 197022, Russian Federation, e-mail: lubov.vasina@gmail.com

Galkin Mikhail Aleksandrovich, Candidate of Sciences (Biology), Assistant Professor, Pavlov University, 6-8, Lev Tolstoy st., Saint-Petersburg, 197022, Russian Federation, e-mail: miat2002@mail.ru

Sharoyko Vladimir Vladimirovich, Doctor of Sciences (Biology), Professor, Pavlov University, 6-8, Lev Tolstoy st., Saint-Petersburg, 1, 97022, Russian Federation, e-mail: sharoyko@gmail.com

Semenov Konstantin Nikolaevich, Doctor of Sciences (Chemistry), Head of Department, Pavlov University, 6-8, Lev Tolstoy st., Saint-Petersburg, 197022, Russian Federation, e-mail: knsemenov@gmail.com

For citation
Berdichevskiy G.M., Vasina L.V., Galkin M.A., Sharoyko V.V., Semenov K.N. Investigation of the Effect of Detonation Nanodiamonds and their Conjugates with Doxorubicin and Dioxadet on the Mitochondrial Membrane. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2022, vol. 41, pp. 3-18. https://doi.org/10.26516/2073-3372.2022.41.3 (in Russian)
Keywords
detonation nanodiamonds, conjugates, doxorubicin, dioxadet, mitochondria, F1F0 ATPase, proteoliposomes, mitochondrial membrane potential.
UDC
61:577.1
DOI
https://doi.org/10.26516/2073-3372.2022.41.3
References

Berdicevskiy G.M., Vasina L.V., Galkin M.A. Izuchenie vliyaniya detonatsionnykh nanoalmazov na membranu mitokhondrii [Investigation of the effect of detonation nanodiamonds on the mitochondrial membrane]. Sovremennye dostizheniya khimiko-biologicheskikh nauk v profilakticheskoi i klinicheskoi meditsine [Modern achievements of chemical and biological sciences in preventive and clinical medicine: Proc. All-Russ. Sci. Conf., St.-Petersburg, Russia. Pt. 2]. St.-Petersburg, North-West. St. Med. Univ. Publ., 2020, pp. 23-28. (in Russian)

Vatlin A.A., Danilenko V.N. F0F1-ATFaza bakterii – nanomotor dlya sinteza i gidroliza ATF, mekhanizm vzaimodeistviya s makrolipidnym antibiotikom oligomitsinom [F0F1-ATPase of bacteria – a nanomotor for the synthesis and hydrolysis of ATP, a mechanism of interaction with the macrolipid antibiotic oligomycin]. Biol. Bull. Rev., 2020, vol. 140, no. 3, pp. 231-243. (in Russian) https://doi.org/10.31857/S0042132420020076

Vul A.Ya., Shenderova O.A. Detonacionnye nanoalmazy. Tekhnologiya, struktura, svojstva i primenenie [Detonation nanodiamonds. Technology, structure, properties and application]. StPetersburg, Ioffe Inst. Publ., 2016. 381 p. (in Russian)

Solomatin A.S., Yakovlev R.Yu., Fedotcheva N.I., Leonidov N.B. Izuchenie vliyaniya modifitsirovannykh nanoalmazov na membrannyi potentsial izolirovannykh mitokhondrii [Study of the effect of modified nanodiamonds on the membrane potential of isolated mitochondria]. Materialy mezhregionalnoi nauchnoi konferentsii s mezhdunarodnym uchastiem Riazanskogo gosudarstvennogo meditsinskogo universiteta imeni akademika I. P. Pavlova [Proc. Sci. Conf. of the I. P. Pavlov Univ., Ryazan, Russia]. Ryazan, 2014, pp. 347-350. (in Russian)

Kulakova I.I., Lisichkin G.V., Yakovlev R.Yu. Khimicheskoe modifitsirovanie poverkhnosti detonatsionnogo nanoalmaza [Chemical modification of the surface of detonation nanodiamond]. Moscow, Moscow St. Univ. Publ., 2018. 92 p. (in Russian)

Berdichevskiy G.M., Vasina L.V., Rjumina E.V., Sharoyko V.V., Semenov K.N. Perspektivy ispol'zovaniya nanoalmazov v meditsine (obzor) [Perspectives for the use of nanodiamonds in medicine (review)]. Problems of biological, medical and pharmaceutical chemistry, 2021, vol. 24, no. 1, pp. 42-45. (in Russian). https://doi.org/10.29296/25877313-2021-01-05

Gershanovich M.L., Filov V.A., Kotova D.G., Stukov A.N. Rezultaty kooperirovannogo klinicheskogo izucheniya protivoopukholevogo preparata dioksadet po II faze [Results of a phase II cooperative clinical study of the anticancer drug dioxadet]. Problems in Oncology, 1998, vol. 44, no. 2, pp. 216-220. (in Russian)

Frantsiyants E.M., Neskubina I.V., Sheiko E.A. Mitokhondrii transformirovannoi kletki kak mishen protivoopukholevogo vozdeistviya [Mitochondria of transformed cell as a target of antitumor influence]. Res. Pract. Med. J., 2020, vol. 7, no. 2, pp. 92-108. (in Russian). http://doi.org/10.17709/2409-2231-2020-7-2-9

Berdichevskiy G.M., Vasina L.V., Ageev S.V., Meshcheriakov A.A., Galkin M.A., Ishmukhametov R.R., Nashchekin A.V., Kirilenko D.A., Petrov A.V., Martynova S.D., Semenov K.N., Sharoyko V.V. A comprehensive study of biocompatibility of detonation nanodiamonds. J. Mol. Liq., 2021, vol. 332, 15763.https://doi.org/10.1016/j.molliq.2021.115763

Ahmad Z., Hassan S.S., Azim S.A. Therapeutic connection between dietary phytochemicals and ATP synthase. Curr. Med. Chem., 2017, vol. 24, no. 35, pp. 3894-3906. https://doi.org/10.2174/0929867324666170823125330

Poot M., Zhang Yu-Z., Krämer J.A., Wells K.S., Jones L.J., Hanzel D.K., Lugade A.G., Singer V.L., Haugland R.P. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem., 1996, vol. 44, is. 12, pp. 1363-1372. https://doi.org/10.1177/44.12.8985128

D’Alessandro M., Turina P., Melandri B.A. Quantitative evaluation of the intrinsic uncoupling modulated by ADP and Pi in the reconstituted ATP synthase of Escherichia coli. BBA-Bioenergetics, 2011, vol. 1807, is, 1, pp. 130-143. https://doi.org/10.1016/j.bbabio.2010.08.011

Galkin M.A., Russell A.N., Vik S.B., Berry R.M., Ishmukhametov R.R. Detergent-free ultrafast reconstitution of membrane proteins into lipid bilayers using fusogenic complementary-charged proteoliposomes. J .Vis. Exp., 2018, vol. 134, e56909. https://doi.org/10.3791/56909

Mizutani H., Oikawa S., Hiraku Y., Murata M., Kojima M., Kawanishi Sh. Distinct mechanisms of site-specific oxidative DNA damage by doxorubicin in the presence of copper(II) and NADPH-cytochrome P450 reductase. Cancer Sci. 2003, vol. 94, is. 8, pp. 686-691. https://doi.org/10.1111/j.1349-7006.2003.tb01503.x

Octavia Y., Tocchetti C.G., Gabrielson K.L., Janssens S., Crijns H.J., Moens A.L. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J. Mol. Cell. Cardiol., 2012, vol. 52, is. 6, pp. 1213-1225. https://doi.org/10.1016/j.yjmcc.2012.03.006

Fedel M. Hemocompatibility of carbon nanostructures. C – J. Carbon Res., 2020, vol. 1, is. 1,12. https://doi.org/10.3390/c6010012

Hong S., Pedersen P.L. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol. Mol. Biol. Rev., 2008, vol. 72, is. 4, pp. 590-641. https://doi.org/10.1128/MMBR.00016-08

Ishmukhametov R.R., Galkin M.A., Vik S.B. Ultrafast purification and reconstitution of Histagged cysteine-less Escherichia coli F1F0 ATP synthase. Biochim. Biophys. Acta, 2005, vol. 1706, is. 1-2, pp. 110-116. https://doi.org/10.1016/j.bbabio.2004.09.012

Ishmukhametov R.R., Russell A.N., Berry R.M. A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes. Nat. Commun., 2016, vol. 7, 13025. https://doi.org/10.1038/ncomms13025

Panwar N., Soehartono A.M., Chan K.K., Zeng S., Xu G., Qu J., Coquet P., Yong K.T., Chen X., Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem. Rev., 2019, vol. 119, is. 16, pp. 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099

Ali M.S., Metwally A.A., Fahmy R.H., Osman R. Nanodiamonds: Minuscule gems that ferry antineoplastic drugs to resistant tumors. Int. J. Pharm., 2019, vol. 558, pp. 165-176. https://doi.org/10.1016/j.ijpharm.2018.12.090

Petit T., Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diam. Relat. Mater., 2018 vol. 89, pp. 52-66. https://doi.org/10.1016/j.diamond.2018.08.005

Fu X., Shi Y., Qi T., Qiu S., Huang Y., Zhao X., Sun Q., Lin G. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Sig. Transduct. Target. Ther. 2020, vol. 15, 262. https://doi.org/10.1038/s41392-020-00342-0

Madamsetty V.S., Sharma A., Toma M., Samaniego S., Gallud A., Wang E., Pal K., Mukhopadhyay D., Fadeel B. Tumor selective uptake of drug-nanodiamond complexes improves therapeutic outcome in pancreatic cancer. Nanomedicine, 2019, vol. 18, pp. 112-121. https://doi.org/10.1016/j.nano.2019.02.020

Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond (Review). Nanotechnology, 2017, vol. 28, 252001. https://doi.org/10.1088/1361-6528/aa6ae4

Kuznetsov N.M., Belousov S.I., Bakirov A.V., Chvalun S.N., Kamyshinsky R.A., Mikhutkin A.A., Vasiliev A.L., Tolstoy P.M., Mazur A.S., Eidelman E.D., Yudina E.B., Vul A.Y. Unique rheological behavior of detonation nanodiamond hydrosols: The nature of sol-gel transition. Carbon, 2020, vol.161, pp. 486-494. https://doi.org/10.1016/j.carbon.2020.01.054

Wallace K., Sardão V., Oliveira P. Mitochondrial determinants of doxorubicin induced cardiomyopathy. Circ. Res., 2020, vol. 126, no. 7, pp. 926–941. https://doi.org/10.1161/CIRCRESAHA.119.314681

Winquist R.J., Gribkoff V.K. Targeting putative components of the mitochondrial permeability transition pore for novel therapeutics. Biochem Pharmacol, 2020, vol. 177, 113995. https://doi.org/10.1016/j.bcp.2020.113995


Full text (russian)