List of issues > Series «Biology. Ecology». 2021. Vol 37
New and Modified Biofuel Cell Designs
Kalashnikova O.B., Kashevskii A.V., Vardanyan N.S., Erdenechimeg D., Zhdanova G.O., Topchiy I.A., Ponamoreva O.N., Vyatchina O.F., Stom D.I. Atsidofil'nye khemolito-trofnye mikroorganizmy: perspektivy primeneniya v biogidrometallurgii i v mikrobnykh toplivnykh elementakh [Acidophilic chemolithotrophic microorganisms: prospects for use in bio-hydrometallurgy and microbial fuel cells]. Izvestiya Vuzov. Prikladnaya Khimiya i Bio-tekhnologiya [Proceedings of Universities. Applied Chemistry and Biotechnology], 2021, vol. 11, no. 1 pp. 34-52. (in Russian).https://doi.org/10.21285/2227-2925-2021-11-1-34-52
Korkina O.S., Sarapulova G.I., Zhdanova G.O., Gorbunova Yu.O., Ivanchikov E.A., Stom D.I., Beshkov V.N. Mikrobiologicheskii preparat «Doktor Robik 109» kak bioagent dlya polucheniya elektricheskogo toka v MTE pri dobavlenii zhirov [Microbiological preparation "Doctor Robik 109" as a bioagent for generating electric current in MFC with the addition of fats] Bul. Irkutsk St. Univ. Ser. Biol. Ecol., 2019, vol. 28, pp. 17-25. (in Russian). https://doi.org/10.26516/2073-3372.2019.28.17
Simayi K.Y., Abdeshahian P., Azman N.F., Chandrasekhar K., Kalil M.S. A comprehen-sive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alex. Eng. J., 2016, vol. 55, pp. 427-443. https://doi.org/10.1016/j.aej.2015.10.008
Pourmadadi M., Shayeh J.S., Omidi M., Yazdian F., Alebouyeh M., Tayebi L. A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electro-chemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim. Acta, 2019, vol. 186, p. 787. https://doi.org/10.1007/s00604-019-3957-9
Al-Mamun A., Ahmad W., Baawain M.S., Khadem M., Dhar B.R. A review of microbial desalination cell technology: Configurations, optimization and applications. J. Clean. Prod., 2018, vol. 183, pp. 458-480. https://doi.org/10.1016/j.jclepro.2018.02.054
Stom D.I., Zhdanova G.O., Kalashnikova O.B., Bulaev A.G., Kashevskii A.V., Kupchinsky A.B., Vardanyan N.S., Ponamoreva O.N., Alferov S.V., Saksonov M.N., Chesnokova A.N., Tolstoy M.Yu. Acidophilic microorganisms Leptospirillum sp., Acidithiobacillus sp., Ferroplasma sp. as a cathodic bioagents in a MFC. Geomicrobiol. J., 2021, vol. 38, no. 4, pp. 340-346. https://doi.org/10.1080/01490451.2020.1856980
Ali A., Audi M., Roussel Y. Natural Resources Depletion, Renewable Energy Consumption and Environmental Degradation: A Comparative Analysis of Developed and Developing. Int. J. Energy Econ., 2021, vol. 11, no. 3, pp. 251-260. https://doi.org/10.32479/ijeep.11008
Zhang Y., Lv Z., Zhou J., Xin F., Ma J., Wu H., Fang Y., Jiang M., Dong W. Application of eukaryotic and prokaryotic laccases in biosensor and biofuel cells: recent advances and electrochemical aspects. Appl. Microbiol. Biotechnol., 2018, vol. 102, pp. 10409-10423.https://doi.org/10.1007/s00253-018-9421-7
Mekawy E., Hegab H.M., Losic D., Saint C.P., Pant D. Applications of Graphene in Microbial Fuel Cells: The Gap between Promise and Reality. Renew. Sust. Energ. Rev., 2017, vol. 72, pp. 1389-1403. https://doi.org/10.1016/j.rser.2016.10.044
Vyatchina O.F., Stom D.I., Goel S., Xie B. Biocathode of microbial fuel cells based on nitrate-reducing strains of Pseudomonas aeruginosa. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 408, 012084. https://doi.org/10.1088/1755-1315/408/1/012084
Kuznetsov A.V., Khorina N.N., Konovalova E.Yu., Amsheev D.Yu., Ponamoreva O.N., Stom D.I. Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell. IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 808, 012038. https://doi.org/10.1088/1755-1315/808/1/012038
Jung S., Lee J., Park Y.-K., Kwon E.E. Bioelectrochemical systems for a circular bioeconomy. Bioresour. Technol., 2020, vol. 300, 122748. https://doi.org/10.1016/j.biortech.2020.122748
Zhdanova G.O., Konovalova E.Yu., Tolstoy M.Yu., Kashevsky A.V., Barbora L., Goswami P., Goel S., Fialkow V.A., Kupchinsky A.B., Stom D.I. Comparative analysis of electrogenic activity of complex microbial preparations in microbial fuel cells. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 272, 032161. https://doi.org/10.1088/1755-1315/272/3/032161
Zhang S., You J., Kennes C., Cheng Z., Ye J., Chen D., Chen J., Wang L. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chem. Engin. J., 2018, vol. 334, pp. 2625-2637. https://doi.org/10.1016/j.cej.2017.11.014
Jeuken L.J.C., Connell S.D., Nurnabi M., O'Reilly J., Henderson P.J.F., Evans S.D., Bush-by R.J. Direct Electrochemical Interaction between a Modified Gold Electrode and a Bacterial Membrane Extract. Langmuir, 2005, vol. 21, pp. 1481-1488. https://doi.org/10.1021/la047732f
Logan B.E., Rossi R., Ragab A., Saikaly P.E. Electroactive microorganisms in bioelectro-chemical systems. Rev. Microbiol., 2019, vol. 17, pp. 307-319. https://doi.org/10.1038/s41579-019-0173-x
Bose D., Kandpal V., Dhawan H., Vijay P., Gopinath M. Energy Recovery with Microbial Fuel Cells: Bioremediation and Bioelectricity. Waste Bioremediation. Energy, Environment, and Sustainability. S. Varjani, E. Gnansounou, B. Gurunathan, D. Pant, Z. Zakaria (eds). Springer, Singapore, 2018. pp 7-33. https://doi.org/10.1007/978-981-10-7413-4_2
Tian Y., Li D., Liu G., Li C., Liu J., Wu J., Liu J., Feng Y. Formate production from CO2 electroreduction in a salinity-gradient energy intensified microbial electrochemical system. Bioresour. Technol., 2021, vol. 320, part A, 124292. https://doi.org/10.1016/j.biortech.2020.124292
Glaven S. M. Bioelectrochemical systems and synthetic biology: more power, more products. Microb. Biotechnol., 2019, vol. 12, no. 5, pp. 819-823. https://doi.org/10.1111/1751-7915.13456
Kochetkova D.A., Onishchenko А.К., Kalashnikova О.B., Zhdanova G.О., Stom D.I. Intensification of work of biofuel elements of heterogeneous metal complex catalysts "Catan". 19th Int. Sci. Geoconf. SGEM 2019, 2019, vol. 19, is. 4.1, pp. 263-270
Kittl S.R., Ludwig R., Gorton L. Direct Electron Transfer from the FAD Cofactor of Cellobiose Dehydrogenase to Electrodes. ACS Catalysis, 2016, vol. 6, pp. 555-563. https://doi.org/10.1021/acscatal.5b01854
Konwar G.B.E., Mahanta D. Flexible Biofuel Cells: An Overview. Biofuel Cells. Inamuddin, M.I. Ahamed, R. Boddula, M. Rezakazemi (eds)., 2021. https://doi.org/10.1002/9781119725008.ch6
Marshall C.W., Ross D.E., Fichot E.B., Norman R.S., May H.D. Long-term Operation of Microbial Electrosynthesis Systems Improves Acetate Production by Autotrophic Microbiomes. Environ. Sci. Technol., 2013, vol. 47, pp. 6023-6029. https://doi.org/10.1021/es400341b
Mateos E.R., Martínez E.J., Blanes J. Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond. Renew. Sustain. Energy Rev., 2016, vol. 55, 942e956. https://doi.org/10.1016/j.rser.2015.11.029
Yuriev D.A., Zaitseva S.V., Zhdanova G.O., Tolstoy M.Yu., Barkhutova D.D., Vyatchi-na O.F., Konovalova E.Yu., Stom D.I. Microbial mat of the thermal springs Kuchiger Republic of Buryatia: species composition, biochemical properties and electrogenic activity in biofuel cell. IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 121, 022012. https://doi.org/10.1088/1755-1315/121/2/022012
Konovalova E.Yu., Barbora L., Chizhik K.I., Stom D.I. Micrococcus luteus and Serratia marcescens, as a new association of bioagents for microbial fuel cells. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 408, Sustainable and Efficient Use of Energy, Water and Natural Resources: 2nd Int. Sci. Conf., 012080. https://doi.org/10.1088/1755-1315/408/1/012080
Paquete C. M. Electroactivity across the cell wall of Gram-positive bacteria // Comput Struct Biotechnol J. 2020. Vol. 18. Р. 3796-3802. doi:10.1016/j.csbj.2020.11.021
Kuzu Ç.S., Erken E., Sert H., Koşkun Y., Şen F. Nearly Monodisperse Carbon Nanotube Furnished Nanocatalysts as Highly Efficient and Reusable Catalyst for Dehydrocoupling of DMAB and C1 to C3 Alcohol Oxidation. Int. J. Hydrog. Energy., 2016, vol. 41, pp. 3093-3101. https://doi.org/10.1016/j.ijhydene.2015.12.138
Paquete C.M. Electroactivity across the cell wall of Gram-positive bacteria. Comput. Struct. Biotechnol. J., 2020, vol. 18, pp. 3796-3802. https://doi.org/10.1016/j.csbj.2020.11.021
Guang L., Koomson D.A., Jingyu H., Ewusi-Mensah D., Miwornunyuie N. Performance of Exoelectrogenic Bacteria Used in Microbial Desalination Cell Technology. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 3, p. 1121. https://doi.org/10.3390/ijerph17031121
Rasmussen M., Abdellaoui S., Minteer S.D. Enzymatic Biofuel Cells: 30 Years of Criti-cal Advancements. Biosens. Bioelectron., 2016, vol. 76, pp. 91-102. https://doi.org/10.1016/j.bios.2015.06.029
Olabi A.G., Wilberforce T., Sayed E.T., Elsaid K., Rezk H., Abdelkareem M.A. Recent progress of graphene based nanomaterials in bioelectrochemical systems. Sci. Total Environ., 2020, vol. 749, 141225. https://doi.org/10.1016/j.scitotenv.2020.141225
Arsdale E.V., Pitzer J., Payne G.F., Bentley W.E. Redox Electrochemistry to Interrogate and Control Biomolecular Communication. iScience, 2020, vol. 23, no. 9, 101545. https://doi.org/10.1016/j.isci.2020.101545
Stom D.I., Zhdanova G.O., Kashevskii A.V. New designs of biofuel cells and testing of their work. IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 262, Int. Conf. on Construction, Archi-tecture and Technosphere Safety, 012219. https://doi.org/10.1088/1757-899X/262/1/012219
Jadhav D.A., Chendake A.D., Schievano A., Pant D. Suppressing methanogens and en-riching electrogens in bioelectrochemical systems. Bioresour. Technol., 2019, vol. 277, pp. 148-156. https://doi.org/10.1016/j.biortech.2018.12.098
Yan W., Xiao Y., Yan W., Ding R., Wang S., Zhao F.The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: A review. Chem. Eng. J., 2019, vol. 358, pp. 1421-1437. https://doi.org/10.1016/j.cej.2018.10.128
Konovalova E.Yu., Stom D.I., Zhdanova G.O., Yuriev D.A., Li Y., Barbora L., Gos-wami P. The Microorganisms Used For Working In Microbial Fuel Cells. AIP Conf. Proc., 2018, vol. 1952, 020017. https://doi.org/10.1063/1.5031979
Gorbunova Yu.O., Karpukhina L.S., Tolstoy M.Yu., Timofeeva S.S., Stom D.I. The production of biofuel and the generation of electricity by Clostridium acetobutylicum in microbial fuel cells. 18th Int. Sci. Geoconf SGEM 2018 (Albena, Bulgaria), 2018, vol. 18, Energy and Clean Technologies, is. 4.1, pp. 705-712.
Wang X., Cheng S., Feng Y., Merrill M.D., Saito T., Logan B.E. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells. Environ. Sci. Technol., 2009, vol. 43, pp. 6870-6874. https://doi.org/10.1021/es900997w
Wilberforce T., Sayed E.T., Abdelkareem M.A., Elsaid K., Olab A.G. Value added products from wastewater using bioelectrochemical systems: Current trends and perspectives. J. Water Process Eng., 2021, vol. 39, 101737. https://doi.org/10.1016/j.jwpe.2020.101737
Xafenias N., Mapelli V. Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. Int. J. Hydrogen Energy, 2014, vol. 39, pp. 21864-21875. https://doi.org/10.1016/j.ijhydene.2014.05.038
Zhdanova G.O., Dukhnov S.S., Stom D.I. Single-cell biofuel element of simple construction from sanitary parts and testing of its work. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 451, Int. Conf. on Construction, Architecture and Technosphere Safety, 012230. URL: http://iopscience.iop.org/article/10.1088/1757-899X/451/1/012230
Zhdanova G.О., Stom D.I., Azarenko Е.V. Elimination of nitrate ions in bio-fuel cells. IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 229, Prospects Mining and Metallurgy Industry Development, 012031. https://doi.org/10.1088/1755-1315/229/1/012031