«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2021. Vol 36

Chlorophyll Fluorescence in Assessing the Effect of Heavy Metal Compounds on Aquatic Organisms

Author(s)
G. A. Sorokina, T. L. Shashkova, M. A. Subbotin, E. S. Stravinskene, Yu. S. Grigoriev
Abstract
Fluorescent methods allow to improve the bioassays because of time effectiveness. These methods give information on chlorophyll concentration and plant photosynthetic apparatus activity in a short period of time. The aim of this study was to estimate the sensitivity of aquatic organisms to heavy metals using chlorophyll fluorescent methods. The test-organisms of different taxonomic categories were used, including thermophilic strain Chlorella vulgaris Beijer, aquatic plants Elodea сanadensis Michx. and Lemna minor L., crustacean Daphnia magna Straus. Fluorimeter “Foton 10” developed in SibFU was employed to measure prompt and delayed fluorescence (PF and DF respectively). The experiments revealed that copper ions affected DF of chlorella in 30 minutes, resulting in a 50% decrease of relative indicator of DF (RIDF) in the range of concentrations 0.005-0.01 mg/l of Cu2+. Measuring the DF of duckweed was less time-consuming compared to registration the changing of morphological parameters when the plants were exposed to heavy metals. Copper, cadmium, and nickel exposures were found to decrease the RIDF of duckweed by more than 50% at the concentrations of 0.17, 0.31, and 1.89 mg/l respectively. However, zinc had no significant effect on the RIDF of Lemna minor in the range of 0.1-8 mg/l of Zn2+ within 24 h of exposure time. The analysis of fluorescent parameters of Canadian elodea showed the possibility of using the plant as a sorbent during the bioremediation of aquatic environments from heavy metals. Registration of chlorophyll fluorescence allowed revealing the toxic effects of negligible concentrations of heavy metals in experiments with the feeding rate of daphnids. The median effective concentrations (EC50) were 0.002, 0.02, 0.4, and 0.25 mg/l of Cd2+, Cu2+, Zn2+, and potassium dichromate respectively. This makes it possible to obtain information on the effects of pollution in the early stages of exposure and in a shorter time. Thus, the use of chlorophyll fluorescence in biomonitoring the state of the aquatic environment makes it possible to more quickly respond to changes in the ecological situation in water bodies.
About the Authors

Sorokina Galina Alexandrovna, Candidate of Science (Biology), Associate Professor, Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russian Federation, e-mail: sorokina_gas@mail.ru

Shashkova Tatiana Leonidovna, Candidate of Science (Biology), Associate Professor, Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041,Russian Federation, e-mail: TShashkova@sfu-kras.ru

Subbotin Mikhail Aleksandrovich, Senior Lecturer, Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russian Federation, e-mail: MSubbotin@sfu-kras.ru

Stravinskene Ekaterina Sergeevna, Candidate of Science (Biology), Senior Lecturer, Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russian Federation, e-mail: EStravinskene@sfu-kras.ru

Grigoriev Yury Sergeevich, Candidate of Science (Biology), Professor, Siberian Federal University, 79, Svobodny av., Krasnoyarsk, 660041, Russian Federation, e-mail: gr2897@gmail.com

For citation

Sorokina G.A., Shashkova T.L., Subbotin M.A., Stravinskene E.S., Grigoriev Yu.S. Chlorophyll Fluorescence in Assessing the Effect of Heavy Metal Compounds on Aquatic Organisms. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2021, vol. 36, pp. 24-36. https://doi.org/10.26516/2073-3372.2021.36.24 (in Russian)

Keywords
prompt and delayed chlorophyll fluorescence, heavy metals, toxicity, Chlorella vulgaris, Lemna minor, Daphnia magna, Elodea canadensis
UDC
504.064
DOI
https://doi.org/10.26516/2073-3372.2021.36.24
References

Matorin D.N., Bratkovskaya L.B., Yakovleva O.V., Venediktov P.S. Biotestirovanie toksichnosti vod po skorosti pogloshcheniya dafniyami mikrovodoroslei, registriruemykh s pomoshch'yu fluorestsentsii khlorofilla [Bioassay of water toxicity by the rate of consumption microalgae by Daphnia registered using chlorophyll fluorescence]. Moscow Univ. Biol. Sci. Bull., 2009, no. 3, pp. 28-33. (in Russian)

Drozdova E.V., Zastenskaya I.A. Razrabotka i nauchnoe obosnovanie batarei chuvstvitel'nykh test-modelei dlya effektivnoi otsenki ostroi toksichnosti vodorastvorimykh khimicheskikh veshchestv [Development and scientific justification of a battery of sensitive test models for the effective assessment of acute toxicity of water-soluble chemicals]. Zdorov'e i okruzhayushchaya sreda [Health and Environment], 2010, no. 16, pp. 320-326. (in Russian)

Matorin D.N., Bratkovskaya L.B., Alekseev A.A. Fluorestsentsiya khlorofilla dlya otsenki sostoyaniya vodoroslei [Chlorophyll fluorescence to assess the state of algal]. Aktual'nye voprosy biologicheskoi fiziki i khimii [Actual Problems of Biological Physics and Chemistry], 2018, vol. 3, no. 3, pp. 686-698. (in Russian)

Ol'kova A.S., Fokina A.I. Daphnia magna Straus v biotestirovanii prirodnykh i tekhnogennykh sred [Daphnia magna Straus in the biotesting of natural and industrial environments]. Biol. Bull. Rev., 2015, vol. 135, no, 4. pp. 380-389. (in Russian)

Lysenko V.S., Varduni T.V., Soier V.G., Krasnov V.P. Fluorestsentsiya khlorofilla rastenii kak pokazatel' ekologicheskogo stressa: teoreticheskie osnovy primeneniya metoda [Plant chlorophyll fluorescence as an indicator of environmental stress: theoretical basis for the application of the method]. Fundamental'nye issledovaniya [Fundamental Research], 2013, no. 4, pp. 112-120. (in Russian)

Shashkova T.L., Grigoriev Yu.S. Sravnitel'naya otsenka chuvstvitelnosti pokazatelei vyzhivaemosti i troficheskoi aktivnosti Daphnia magna pri opredelenii toksichnosti vody [Comparative evaluation of the sensitivity of survival rates and trophic activity of Daphnia magna in determining water toxicity]. Povolzhskii ekologicheskii zhurnal [Povolzhskiy Journal of Ecology], 2013, no. 4, pp. 439-444. (in Russian)

Kumar K.S., Dahms H-U., Lee J-S., Kim H.Ch., Lee W.Ch., Shin K-H. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence. Ecotoxicol. Environ. Saf., 2014, vol. 104, pp. 1-71. https://doi.org/10.1016/j.ecoenv.2014.01.042

Bioassays. Advanced Methods and Applications. Häder D. P., Erzinger G. S. (Eds.) // Elsevier, 2018, 464 p. https://doi.org/10.1016/C2016-0-01695-9

Jusoha N.A., Chaia M.K., Wong L. Sh., Ong G.H., Voon B.N. Bioindication of heavy metals in aquatic environment using photosynthetic pigments in cyanobacteria. S. Afr. J. Chem. Eng., 2020, no. 34, pp. 78-81. https://doi.org/10.1016/j.sajce.2020.05.011

Bhagooli R., Mattan-Moorgawa S., Kaullysing D., Louis Y.D., Gopeechund A., Ramah S., Soondur M., Pilly S.S., Beesoo R., Wijayanti D.P., Bachok Z.B., Monras V.C., Casareto B.E., Suzuki Y., Baker A.Ch. Chlorophyll fluorescence – A tool to assess photosynthetic performance and stress photophysiology in symbiotic marine invertebrates and seaplants. Mar. Pollut. Bull., 2021, no. 165, pp. 1-29. https://doi.org/10.1016/j.marpolbul.2021.112059

Choi Ch.J., Berges J.A., Young E.B. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: Variable responses among freshwater microalgae. Water Res., 2012, vol. 46, pp. 2615-2626. https://doi.org/10.1016/j.watres.2012.02.027

Berden-Zrimec M., Drinovec L., Zrimec A., Tišler T. Delayed fluorescence in algal growth inhibition tests. Cent. Eur. J. Biol., 2007, no. 2(2), pp. 169-181. https://doi.org/10.2478/s11535-007-0014-1

Goltsev V., Zaharieva I., Chernev P., Strasser R.J. Delayed fluorescence in photosynthesis. Photosynth. Res., 2009, vol. 101, pp. 217-232. https://doi.org/10.1007/s11120-009-9451-1

Appenroth K.J., Krech K., Keresztes A., Fischer W., Koloczek H. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Chemosphere, 2010, vol. 78, pp. 216-223. https://doi.org/10.1016/j.chemosphere.2009.11.007

Küster A., Altenburger R. Development and validation of a new fluorescence-based bioassay for aquatic macrophyte species. Chemosphere, 2007, vol. 67, pp. 194-201. https://doi.org/10.1016/j.chemosphere.2006.08.023

Grintzalis K., Dai W., Panagiotidis K., Belavgeni A., Viant M. R. Miniaturising acute toxicity and feeding rate measurements in Daphnia magna. Ecotoxicol. Environ. Saf., 2017, vol. 139, pp. 352-357. https://doi.org/10.1016/j.ecoenv.2017.02.002

Naumann B., Eberius M., Appenroth K-J. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 4520079) with Lemna minor L. clone St. Plant Physiol., 2007, vol. 164, pp. 56-64. https://doi.org/10.1016/j.jplph.2006.10.011

Zhou Q., Yang N., Li Y., Ren B., Ding X., Bian H., Yao X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv., 2020, no. 22, pp. 1-11. https://doi.org/10.1016/j.gecco.2020.e00925

Vardhan K.H., Kumar P.S., Panda R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq., 2019, no. 290, pp. 1-22. https://doi.org/10.1016/j.molliq.2019.111197


Full text (russian)