«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2020. Vol. 32

Effect of Selenium-Arabinogalactan Nanocomposite on the Colonization of Potato Plants in vitro by the Ring Rot Pathogen

Author(s)
A. I. Perfileva, O. A. Nozhkina, I. A. Graskova, N. S. Zabanova, I. V. Klimenkov, G. P. Aleksandrova, B. G. Sukhov
Abstract

It has been previously shown that the chemically synthesized nanocomposite of selenium with arabinogalactan (NC Se/AG) is characterized by antibacterial effect upon the agent of ring rot – gram-positive bacterium Clavibacter sepedonicus (Cms), with the NC Se/AG having no negative effect on potato plants. In the present paper, it has been found that, 1 hour after the treatment of the NC Se/AG, a substantial elevation of lipid peroxidation products was observed in potato root tissues. This supports earlier results on the increase in reactive oxygen species (ROS) production in potato root tissues under the influence of NC Se/AG. It is proposed that the increased ROS content in potato may inhibit pathogen colonization of plants. This has been tested by seeding homogenised plant tissues of various potato zones (roots, stems, shoot apex zone) onto the nutrient medium. In plants infected with Cms and untreated with the NC, the number of colony forming units (CFUs) of Cms has been shown to be numerous both in potato culture medium and in root and stem tissues. In shoot apex zone of such plants, it has been revealed, bacteria also present, but in smaller quantities. Similar data have been obtained by seeding homogenised tissues from roots and stems of potato plants treated with the NC followed by infection with Cms. However, seeding from shoot apex zones of the plants has been given 4 times less CFUs than from potato plants not treated with the NC. The effect of the NC Se/AG upon the pathogen colonization of plants appears to depend on the titre of the microorganism. In shoot apex zone of plants, characterized with small number of CFUs of Cms, the pathogen growth has been decreased. For the first time, Cms bacteria in potato plant tissues in vitro have been visualized with the aid of scanning microscopy.

About the Authors

Perfileva Alla Innokent'evna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: alla.light@mail.ru 

Nozhkina Olga Aleksandrovna, Graduate Student, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: smallolga@mail.ru 

Graskova Irina Alekseevna, Doctor of Sciences (Biology), Chief Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, e-mail: graskova@sifibr.irk.ru 

Zabanova Natalya Sergeevna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation; Assistant Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664033, Russian Federation, e-mail: pavnatser@mail.ru 

Klimenkov Igor' Viktorovich, Doctor of Sciences (Biology), Leading Research Scientist, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664033, Russian Federation; Assistant Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664033, Russian Federation, e-mail: iklimen@mail.ru 

Alexandrova Galina Petrovna, Candidate of Science (Chemistry), Senior Research Scientist, A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1, Favorsky st., Irkutsk, 664033, Russian Federation, e-mail: alexa@irioch.irk.ru 

Sukhov Boris Gennadyevich, Candidate of Science (Chemistry), Leading Research Scientist, A.E. Favorsky Irkutsk Institute of Chemistry SB RAS, 1, Favorsky st., Irkutsk, 664033, Russian Federation, e-mail: sukhov@irioch.irk.ru

For citation

Perfileva A.I., Nozhkina O.A., Graskova I.A., Zabanova N.S., Klimenkov I.V., Aleksandrova G.P., Sukhov B.G. Effect of Selenium-Arabinogalactan Nanocomposite on the Colonization of Potato Plants in vitro by the Ring Rot Pathogen. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2020, vol. 32, pp. 3-17. https://doi.org/10.26516/2073-3372.2020.32.3 (in Russian)

Keywords

Potato, nanocomposite, selenium, Clavibacter sepedonicus, lipid peroxidation, colonization, scanning electron microscopy

UDC
57.017.64
DOI
https://doi.org/10.26516/2073-3372.2020.32.3
References

Vladimirov Yu.A., Archakov A.I. Perekisnoe okislenie lipidov v biologicheskikh membranakh [Lipid peroxidation in biological membranes]. Moscow, Nauka Publ., 1972, 252 p. (in Russian).

Graskova I.A., Perfil'eva A.I., Nozhkina O.A., D'yakova A.V., Nurminskii V.N., Klimenkov I.V., Sudakov A.P., Borodina T.M., Aleksandrova G.P., Lesnichaya M.V., Sukhov B.G., Trofimov B.A. Vozdeistvie nanorazmernogo selena na vozbuditel' kol'tsevoi gnili i kartofel' in vitro [The effect of nanoscale selenium on the causative agent of ring rot and potato in vitro]. Khimiya Rastitel'nogo Syr'ya [Chemistry of plant raw material], 2019, no. 3, pp. 345-354. (in Russian).

Shurygina I.A., Rodionova L.V., Shurygin M.G., Sukhov B.G., Kuznetsov S.V., Popova L.G., Dremina N.N. Konfokal'naya mikroskopiya v izuchenii vliyaniya original'nykh profermentnykh nanoglikokon"yugatov elementnogo selena na regeneratsiyu opornykh tkanei [Confocal microscopy in studying the effect of original proenzyme nanoglycoconjugates of elemental selenium upon the regeneration of supporting tissues]. Bulletin of the Russian Academy of Sciences: Physics, 2015, vol. 79, no. 2, pp. 280-282. https://doi.org/10.7868/S0367676515020271 (in Russian). 

Perfil'eva A.I., Nozhkina O.A., Graskova I.A., D'yakova A.V., Pavlova A.G., Aleksandrova G.P., Sukhov B.G., Trofimov B.A. Nanokompozity selena s polisakharidnymi matritsami stimuliruyut rost kartofelya in vitro, infitsirovannogo vozbuditelem kol'tsevoi gnili [Selenium nanocomposites having polysaccharid matrices stimulate growth of potato plants in vitro infected with ring rot pathogen]. Doklady Biological Sciences, 2019, vol. 489, no. 3, pp. 325-330. https://doi.org/10.31857/S0869-56524893325-330 (in Russian)

Zhemchuzhin S.G., Spiridonov Yu.Ya., Kleimenova I.Yu., Bosak G.S. Nanotekhnologii i pestitsidy (daidzhest publikatsii za 2011–2017 gg.) [Nanotechnology and pesticides (digest of publications for 2011–2017)]. Agrokhimiya, 2019, no. 5, pp. 89-96. (in Russian).

Perfil'eva A.I., Rymareva E.V. Deistvie monoiodatsetata natriya na kolonizatsiyu rastenii kartofelya in vitro vozbuditelem kol'tsevoi gnili. Zashchita i karantin rastenii [Protection and Quarantine of Plants], 2013, no. 3 pp. 49-50. (in Russian).

Petukhov A.S., Khritokhin N.A., Petukhova G.A. Perekisnoe okislenie lipidov v kletkakh rastenii v usloviyakh gorodskoi sredy [Lipid peroxidation in plant cells in urban environments]. RUDN Journal of Ecology and Life Safety, 2018, vol. 26, no. 1, pp. 82-90. (in Russian). https://doi.org/10.22363/2313-2310-2018-26-1-82-90

Natasha, Shahid M., Niazi N. K., Khalid S., Murtaza B., Bibi I., Rashid M. I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human. Environ. Pollut., 2018, vol. 234, pp. 915-934. https://doi.org/10.1016/j.envpol.2017.12.019

Florack D.E., Visser B., de Vries P.M., van Vuurde J.W.L., Stiekema W.J. Analysis of the toxicity of purothionins and hordothionins for plant pathogenic bacteria. Neth. J. Plant Pathol., 1993, vol. 99, no. 5-6, pp. 259-268.

Ayliffe M., Sørensen C. K. Plant nonhost resistance: paradigms and new environments. Curr. Opin. Plant. Biol., 2019, vol. 50, pp. 104-113. https://doi.org/10.1016/j.pbi.2019.03.011

Ma X., Wang Q., Rossi L., Zhang W. Cerium oxide nanoparticles and bulk cerium oxide leading to different physiological and biochemical responses in Brassica rapa. Environ. Sci. Technol., 2016, vol. 50, pp. 6793-6802. https://doi.org/10.1021/acs.est.5b04111

Atha D.H., Wang H., Petersen E.J., Cleveland D., Holbrook R.D., Jaruga P., Dizdaroglu M., Xing B., Nelson B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol., 2012, vol. 46, pp. 1819-1827. https://doi.org/10.1021/es202660k

Perfileva A.I., Motyleva S.M., Arsentyev K.Yu., Klimenkov I.V., Graskova I.A., Sukhov B.G., Trofimov B.A. Development of antimicrobial nano-selenium biocomposite for protecting potatoes from bacterial phytopathogens. Nanotechnologies in Russia, 2017, vol. 12, no. 8-9, pp. 90-95.

Rajput V.D., Minkina T., Suskova S., Mandzhieva S., Tsitsuashvili V., Chaplygin V., Fedorenko A. Effects of copper nanoparticles (CuO NPs) on crop plants: A mini review. BioNanoScience, 2018, vol. 8, pp. 36-42. https://doi.org/10.1007/s12668-017-0466-3

Sheykhbaglou R., Sedghi M., Shishevan M.T., Sharifi R.S. Effects of nano-iron oxide particles on agronomic traits of soybean. Not. Sci. Biol., 2010, vol. 2, pp. 112-113. 

Jiang C., Zu C., Shen J., Shao F., Li T. Effects of selenium on the growth and photosynthetic characteristics of flue-cured tobacco (Nicotiana tabacum L.). Acta. Soc. Bot. Pol., 2015, vol. 84, pp. 71-77. https://doi.org/10.5586/asbp.2015.006

Eichenlaub R., Gartemann K.H. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Annu. Rev. Phytopathol., 2011, vol. 49, pp. 445-464. https://doi.org/10.1146/annurev-phyto-072910-095258

Hussein H.A., Darwesh O.M., Mekki B.B., El-Hallouty S.M. Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium. Biotechnol. Rep. (Amst), 2019, vol. 12, no. 24, pp. 1-7. https://doi.org/10.1016/j.btre.2019.e00377

C.O. Dimkpa, D.E. Latta, J.E. McLean, D.W. Britt, M.I. Boyanov, A.J. Anderson Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ. Sci. Technol., 2013, vol. 47, pp. 4734-4742. https://doi.org/10.1021/es304736y

Gupta M., Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant. Sci., 2017, vol. 7, pp. 1-14. https://doi.org/10.3389/fpls.2016.02074

Liebthal M., Dietz K.J. The fundamental role of reactive oxygen species in plant stress response. Methods Mol. Biol., 2017, vol. 1631, pp. 23-39. https://doi.org/10.1007/978-1-4939-7136-7_2

Rodionova L.V., Shurygina I.A., Sukhov B.G., Popova L.G., Shurygin M.G., Artem’ev A.V., Pogodaeva N.N., Kuznetsov S.V., Gusarova N.K., Trofimov B.A. Nanobiocomposite based on selenium and arabinogalactan: Synthesis, structure, and application. Russ. J. Gen. Chem., 2015, vol. 85, pp. 485-487. https://doi.org/10.1134/S1070363215020218

Newbery F., Qi A., Fitt B.D. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications. Curr. Opin. Plant. Biol., 2016, vol. 32, pp. 101-109. https://doi.org/10.1016/j.pbi.2016.07.002

Noctor G., Reichheld J.-P., Foyer C. H. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol., 2018, vol. 80, pp. 3-12. https://doi.org/10.1016/j.semcdb.2017.07.013

Choudhury F.K., Rivero R.M., Blumwald E., Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J., 2017, vol. 90, no. 5, pp. 856-867. https://doi.org/10.1111/tpj.13299 

Li X., Tambong J., Yuan К.X., Chen W., Xu H., Lévesque C.A., De Boer S.H. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses. Int. J. Syst. Evol. Microbiol., 2018, vol. 68, no. 1, pp. 234-240. https://doi.org/10.1099/ijsem.0.002492

Roozen N.J.M., van Vuurde J.W.L. Development of a semi-selective medium and an immunofluorescence colonystaining procedure for the detection of Clavibacter michiganensis subsp. sepedonicus in cattle manure slurry. Neth. J. Plant Pathol., 1991, vol. 97, no. 5, pp. 321-334.

Feng T., Chen S., Gao D., Liu G., Bai H., Li A., Peng L., Ren Z. Selenium improves photosynthesis and protects photosystem II in pear (Pyrus bretschneideri), grape (Vitis vinifera), and peach (Prunus persica). Photosynthetica, 2015, vol. l53, pp. 609-612. https://doi.org/10.1007/s11099-015-0118-1

Sheykhbaglou R., Sedghi M., Fathi-Achachlouie B. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (Glycine max L.) seed. An. Acad. Bras. Cienc., 2018, vol. 90, pp. 485-494. http://dx.doi.org/10.1590/0001-3765201820160251

Graskova I.A., Perfilieva A.I., Nozhkina O.A., Sukhov B.G., Aleksandrova G.P., Trofimov B.A. Silver-containing nanocomposites of humic substances, agents for healing of potatoes from the ring rot. Doklady Biochemistry and Biophysics, 2018, vol. 483, pp. 321-324. https://doi.org/10.1134/S0012496618060078

Coman V., Oprea I., Leopold L.F., Vodnar D.C., Coman C. Soybean interaction with engineered nanomaterials: A literature review of recent data. Nanomaterials, 2019, vol. 9, no. 9, p. 1248. https://doi.org/10.3390/nano9091248

Perfileva A.I., Nozhkina O.A., Graskova I.A., Sidorov A.V., Lesnichaya M.V., Aleksandrova G.P., Dolmaa G., Klimenkov I.V., Sukhov B.G. Synthesis of selenium and silver nanobiocomposites and their influence on phytopathogenic bacterium Clavibacter michiganensis subsp. Sepedonicus. Russ. Chem. Bull., 2018, vol. 67, pp. 157-163.

Nozhkina O.A., Perfileva A.I., Graskova I.A., Dyakova A.V., Nurminsky V.N., Klimenkov I.V., Ganenko T.V., Borodina T.N., Aleksandrova G.P., Sukhov B.G., Trofimov B.A. The biological activity of a selenium nanocomposite encapsulated in carrageenan macromolecules with respect to ring rot pathogenesis of potato plants. Nanotechnologies in Russia, 2019, vol. 14, no. 5-6, pp. 74-81.

Ardebili Z.O., Ardebili N.O., Jalili S., Safiallah S. The modified qualities of basil plants by selenium and/or ascorbic acid. Turk. J. Bot., 2015, vol. 39, pp. 401-407. https://doi.org/10.3906/bot-1404-20

Romanenko A.S., Riffel A.A., Graskova I.A., Rachenko M.A. The role of extracellular pH-homeostasis in potato resistance to ring-rot pathogen. Phytopathol., 1999, vol. 147, no. 11-12, pp. 679-686. https://doi.org/10.1046/j.1439-0434.1999.00450.x

Yan A., Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci., 2019, vol. 20, no. 5, p. 1003. https://doi.org/10.3390/ijms20051003

Youssef M. S., Elamawi R. M. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environ. Sci. Pollut. Res. Int., 2018, vol. 27, pp. 1-13. http://dx.doi.org/10.1007/s11356-018-3250-1


Full text (russian)