«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2020. Vol. 31

Structures of the CRISPR/Cas System in the Genome of the Staphylococcus aureus ST228 Strain and Phage Races Detected by Bioinformatics

Author(s)
A. Yu. Borisenko, Yu. P. Dzhioev, L. A. Stepanenko, Yu. M. Zemlyanskaya, N. P. Peretolchina, N. A. Arefieva, Yu. S. Bukin, E. B. Rakova, L. A. Kokorina, Ya. A. Portnaya, O. F. Vyatchina, A. S. Martynova, L. A. Frantseva, V. V. Vasiliev, G. A. Teterina, V. P. Salovarova, E. V. Simonova, V. I. Zlobin
Abstract

In the modern world, infections caused by multidrug-resistant (MDR) bacteria have become carriers of global threats to human health. Today these pathogenic bacteria have come to be referred to as “superbugs” and their number and aggressiveness is growing. This group of "superbugs" also includes Staphylococcus aureus. It is capable of infecting almost any tissue in the human body. Therefore, it became necessary to find alternative antibiotic methods of treating bacterial infections. The use of bacteriophages is again among them. We propose a new approach in the search for strain-specific (target) phages through the structures of the CRISPR/Cas-systems of bacteria. As is known, CRISPR/Cas systems are the most ancient system of “adaptive immunity” in bacteria. This system makes bacteria resistant to phages and plasmids. This approach is based on the use of methods of structural genomics and software bioinformatics modeling. Using them, an algorithm was developed to search for the structures of CRISPR/Cas systems in bacterial genomes presented in the NCBI databases and screening through their CRISPR cassettes of phages with which a particular strain could meet. The design of the developed algorithm was tested on the genome of methicillin-resistant S. aureus strain (ST228-MRSA-I) from the GenBank database. The results of the search for loci and structures of the CRISPR/Cas system in the genome of this strain showed that the identified system belongs to type III-A. It was found that the cas genes and the CRISPR cassette are located at a distance from each other and between them are located several genes that perform other functions in the genome of the S. aureus strain. It was shown that the structures of spacers in the detected CRISPR cassette are identical to protospacers of phages, the hosts of which are bacteria of the following genera – Staphylococcus, Mycobacterium, Streptococcus, Bacillus, Gordonia, Arthrobacter, Streptomyces. Thus, it can be stated that the developed algorithm of software methods for searching for loci of CRISPR/Cas systems and screening for phages makes it possible to type both the system itself and through its spacers to detect and identify phage races with which a particular bacterial strain could meet. The degree of resistance of a particular bacterial strain to specific phages is also determined, which in the long term should ensure the effectiveness of targeted phage therapy for infections caused by pathogenic bacteria, including “superbugs”.

About the Authors

Borisenko Andrei Yurievich, Assistant, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: 89500720225@mail.ru 

Dzhioev Yuri Pavlovich, Candidate of Sciences (Biology), Senior Research Scientist, Head of Laboratory, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: alanir07@mail.ru 

Stepanenko Lilia Alexandrovna, Candidate of Sciences (Medicine), Senior Research Scientist, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: steplia@mail.ru 

Zemlyanskaya Julia Mikhailovna, Senior Lecturer, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: yuliyazemlya84@mail.ru 

Peretolchina Nadezhda Pavlovna, Junior Research Scientist, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: nadine1lenz@gmail.com 

Arefieva Nadezhda Aleksandrovna, Student, Irkutsk State University, 1, Karl Marx st., Irkutsk, 664003, Russian Federation, e-mail: arefieva.n4@gmail.com 

Bukin Yuri Sergeevich, Candidate of Sciences (Biology), Senior Research Scientist, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664033, Russian Federation, e-mail: bukinys@lin.irk.ru 

Rakova Elena Borisovna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: lenova_@mail.ru 

Kokorina Lyubov Aleksandrovna, Assistant, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: lubovkokorina1990@yandex.ru

Portnaya Yana Alekseevna, Student, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: portnaya.yana.1997@yandex.ru 

Vyatchina Olga Fedorovna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, Russian Federation, 664003, Irkutsk, st. Karl Marx, 1, e-mail: olgairk3@rambler.ru 

Martynova Alena Sergeevna, Undergraduate, Irkutsk State University, 1, Karl Marx st., Irkutsk, 664003, Russian Federation, e-mail: martynovalen@mail.ru 

Frantseva Lada Andreevna, Student, Irkutsk State University, 1, Karl Marx st., Irkutsk, 664003, Russian Federation, e-mail: ladafrantseva@yandex.ru 

Vasiliev Valery Vladimirovich, Research Scientist, Irkutsk Anti-plague Research Institute of Siberia and Far East of Rospotrebnadzor, 78, Trilisser st., Irkutsk, 664047, Russian Federation, e-mail: marmakeda_007@mail.ru 

Teterina Galina Aleksandrovna, Graduate Student, Irkutsk State University, 1, Karl Marx st., Irkutsk, 664003, Russian Federation, e-mail: galina.teterina.91@mail.ru 

Salovarova Valentina Petrovna, Doctor of Sciences (Biology), Professor, Head of Department, Irkutsk State University, 1, Karl Marx st., Irkutsk, 664003, Russian Federation, e-mail: vsalovarova@rambler.ru 

Simonova Elena Vasilievna, Doctor of Sciences (Biology), Professor, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: ev.simonova@yandex.ru 

Zlobin Vladimir Igorevich, Doctor of Sciences (Medicine), Professor, Academician of RAS, Head of Department, Director of the Research Institute of Biomedical Technologies, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, e-mail: vizlobin@mail.ru

For citation

Borisenko A.Yu., Dzhioev Yu.P., Stepanenko L.A., Zemlyanskaya Yu.M., Peretolchina N.P., Arefieva N.A., Bukin Yu.S., Rakova E.B., Kokorina L.A., Portnaya Ya.A., Vyatchina O.F., Martynova A.S., Frantseva L.A., Vasiliev V.V., Teterina G.A., Salovarova V.P., Simonova E.V., Zlobin V.I. Structures of the CRISPR/Cas System in the Genome of the Staphylococcus aureus ST228 Strain and Phage Races Detected by Bioinformatics. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2020, vol. 31, pp. 3-18. https://doi.org/10.26516/2073-3372.2020.31.3 (in Russian)

Keywords

genome of strain of Staphylococcus aureus ST228, program methods of bioinformatics, CRISPR/Cas-system, spacers, repeats, protospisers, bacteriophages

UDC
579.61:616-078+575.112
DOI
https://doi.org/10.26516/2073-3372.2020.31.3
References

Borisenko A.Yu., Dzhioev Yu.P., Paramonov A.I., Bukin Yu.S., Stepanenko L.A., Kolbaseeva O.V., Zlobin V.I., Voskresenskaya E.A., Stepanenko L.A., Zelinskaya N.E., Kolbaseeva O.V., Schmidt N.V., Malov I.V. Bioinformatsionnye algoritmy poiska i analiza CRISPR/Cas-sistem i fagovykh profilei v genome shtamma Staphylococcus aureus M1216 [Bioinformational algorithms for searching and analyzing CRISPR/Cas systems and phage profiles in the genome of the Staphylococcus aureus strain M1216]. J. Infect., 2016, vol. 8, no. S2, pp. 27-28. (in Russian)

Zemlyanko O.M., Rogoza T.M., Zhuravleva G.A. Mekhanizmy mnozhestvennoi ustoichivosti bakterii k antibiotikam [Mechanisms of multiple resistance of bacteria to antibiotics]. Ecol. Gen., 2018, vol. 16, no. 3, pp. 4-17. (in Russian). https://doi.org/10.17816/ecogen1634-17

Borisenko A.Yu., Dzhioev Yu.P., Paramonov A.I., Bukin Yu.S., Stepanenko L.A., Kolbaseeva O.V., Zlobin V.I. Ispol'zovanie bioinformatsionnykh programmnykh metodov dlya poiska CRISPR/Cas-sistem v genomakh shtammov Staphylococcus aureus [The use of bioinformation software methods for searching for CRISPR/Cas-systems in the genomes of Staphylococcus aureus strains]. Siberian Med. J., 2015, vol. 133, no. 2, pp. 71-74. (in Russian)

Panin A.N., Komarov A.A., Kulikovsky A.V., Makarov D.A. Problema rezistentnosti k antibiotikam vozbuditelei boleznei, obshchikh dlya cheloveka i zhivotnykh [The problem of antibiotic resistance of pathogens common to humans and animals]. Veterinariya, Zootekhniya i Biotekhnologiya [Veterinary medicine, zootechnics and biotechnology], 2017, no. 5, pp. 18-24. (in Russian)

Bhaya D., Davison M., Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet., 2011, no. 45, pp. 273-297. https://doi.org/10.1146/annurev-genet-110410-132430 

Burki T. K. Superbugs: An Arms Race Against Bacteria // Lancet Respir. Med., 2018, vol. 6, no. 9, pp. 668. https://doi.org/10.1016/S2213-2600(18)30271-6 

Biswas A., Gagnon J. N., Brouns S. J. J., Fineran P., Brown C. CRISPR Target: Bioinformatic prediction and analysis of crRNA targets. RNA Biology, 2013, vol. 10, no. 5, pp. 817-827. https://doi.org/10.4161/rna.24046

Rousseau C., Gonnet M., Le Romancer M., Nicolas J. CRISPI: a CRISPR interactive database. Bioinformatics, 2009, vol. 25, no. 24, pp. 3317-3318. https://doi.org/10.1093/bioinformatics/btp586

Mackow N.A., Shen J., Adnan M., Khan A.S., Fries B.C., Diago-Navarro E. CRISPR-Cas influences the acquisition of antibiotic resistance in Klebsiella pneumonia. PLoS One, 2019, vol. 14, no. 11:e0225131. https://doi.org/10.1371/journal.pone.0225131 

Deurenberg R. H., Stobberingh E. E. The evolution of Staphylococcus aureus. Infect. Genet. Evol. 2008, vol 8, no. 6, pp. 747-763. https://doi.org/10.1016/j.meegid.2008.07.007

Domingo-Calap P., Delgado-Martínez J. Bacteriophages: protagonists of a post-antibiotic era. Antibiotics, 2018, vol. 7, no. 3, p. 66. https://doi.org/10.3390/antibiotics7030066 

Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol., 2019, no. 10, p. 539. https://doi.org/10.3389/fmicb.2019.00539

Founou R.C., Founou L.L., Essack S.Y. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. PLoS ONE, 2017, vol. 12, no. 12. e0189621. https://doi.org/10.1371/journal.pone.0189621

Gasiunas G., Sinkunas T., Siksnys V. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell. Mol. Life Sci., 2014, vol. 71, no. 3, pp. 449-465. https://doi.org/10.1007/s00018-013-1438-6

Goldmann O., Medina E. Staphylococcus aureus strategies to evade the host acquired immune response. Int. J. Med. Microbiol., 2018, vol. 308, no. 6, pp. 625-630. https://doi.org/10.1016/j.ijmm.2017.09.013 

Grissa I., Vergnaud G., Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucl. Acids Res., 2007, vol. 35, pp. W52-W57. https://doi.org/10.1093/nar/gkm360

Wang J.L., Lai C.H., Lin H.H., Chen W.F., Shih Y.C., Hung C.H. High vancomycin minimum inhibitory concentrations with heteroresistant vancomycin-intermediate Staphylococcus aureus in meticillin-resistant S. aureus bacteraemia patients. Int. J. Antimicrob. Agents, 2013, vol. 42, no. 5, pp. 390-394. https://doi.org/10.1016/j.ijantimicag.2013.07.010

Abby S.S., Neron B., Menager H., Touchon M., Rocha E.P.C. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems. PLoS ONE, 2014, vol. 9, no. 10, p. e110726. https://doi.org/10.1371/journal.pone.0110726 

Bondy-Denomy J., Garcia B., Strum S., Du M., Rollins M.F., Hidalgo-Reyes Y., Wiedenheft B., Maxwell K.L., Davidson A.R. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature, 2015, vol. 526, no. 7571, pp. 136-139. https://doi.org/10.1038/nature15254

Smyth D.S., Kafer J.M., Wasserman G.A., Velickovic L., Mathema B., Holzman R. S. Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. J. Infect. Dis., 2012, vol. 206, no. 8, pp.1168-77. https://doi.org/10.1093/infdis/jis483

Eiff C., Becker K., Machka K., Stammer H., Peters G. Nasal carriage as a source of Staphylococcus aureus bacteremia. N. Engl. J. Med., 2012, no. 344, pp. 11-16. https://doi.org/10.1056/NEJM200101043440102 

de Jong N.W.M., van Kessel K.P.M., van Strijp J.A.G. Immune Evasion by Staphylococcus aureus. Microbiol Spectr., 2019, vol. 7, no. 2. https://doi.org/10.1128/microbiolspec.GPP3-0061-2019

Navidinia M. The clinical importance of emerging ESKAPE pathogens in nosocomial infections. J. Paramed. Sci., 2016, vol. 7, no. 3, pp. 43-57.

Chang H.H., Cohen T., Grad Y.H., Hanage W.P., O'Brien T.F., Lipsitch M. Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiol. Mol. Biol. Rev,. 2015, vol. 79, no. 1, pp. 101-16. https://doi.org/10.1128/MMBR.00039-14

Planet P.J., Parker D., Ruff N.L., Shinefield H.R. Revisiting Bacterial Interference in the Age of Methicillin-resistant Staphylococcus aureus: Insights into Staphylococcus aureus Carriage, Pathogenicity and Potential Control. Pediatr. Infect. Dis. J., 2019, vol. 38, no. 9, pp. 958-966. https://doi.org/10.1097/INF.0000000000002411

Zlobin V.I., Dzhioev Y.P., Peretolchina N.P., Borisenko A.Y., Stepanenko L.A., Wang Y., Qu Z., Pierneef R., Reva O.N. Prospects to Enhance Phage Therapy by Looking At CRISP Fingerprints in Bacterial Populations. Current Trends in Biomedical Engineering & Biosciences, 2018, vol. 10, no. 5, pp. 1-3. https://juniperpublishers.com/ctbeb/pdf/CTBEB.MS.ID.555800.pdf

Rice L. B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J.Inf. Dis., 2008, vol. 197, no. 8, pp. 1079-1081. https://doi.org/10.1086/533452

Vogel V., Falquet L., Calderon-Copete S.P., Basset P., Blanc D.C. Short term evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228) in a tertiary care hospital. PLoS One, 2012, vol. 7, no. 6:e38969. https://doi.org/10.1371/journal.pone.0038969

Sontheimer E.J., Barrangou R. The Bacterial Origins of the CRISPR Genome-Editing Revolution. Hum. Gene Ther., 2015, vol. 26, no. 7, pp. 413-24. https://doi.org/10.1089/hum.2015.091

Pirnay J.P., Verbeken G., Ceyssens P.J., Huys I., De Vos D., Ameloot C., Fauconnier A. The magistral phage. Viruses, 2018, vol. 10, no. 2, pii: E64. https://doi.org/10.3390/v10020064

Veeraraghavan B., Walia K. Antimicrobial susceptibility profile & resistance mechanisms of Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens from India. Indian J. Med. Res., 2019, vol. 149, no. 2, pp. 87-96. https://doi.org/10.4103/ijmr.IJMR_214_18


Full text (russian)