«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2018. Vol. 26

Detection and Analysis of CRISPR-Cas System Structures in Genome of Plasmid pYC-1 of Bacillus thuringiensis Strain YC-10

Author(s)
N. A. Arefieva, Yu. P. Dzhioev, A. Yu. Borisenko, L. A. Stepanenko, N. P. Peretolchina, Yu. S. Bukin, V. I. Chemerilova, O. F. Vyatchina, O. A. Sekerina, Yu. A. Markova, G. V. Yurinova, V. P. Salovarova, A. А. Pristavka, V. A. Kuzminova, A. S. Martynova, V. I. Zlobin
Abstract

The aim of this work was to search and analyze the structures of the CRISPR-Cas system in the genome of the plasmid pYC-1 from the strain Bacillus thuringiensis YC-10 using a selected algorithm of bioinformatics software. A search and analysis of the structures of the CRISPR-Cas-system in the genome of the plasmid pYC-1, which is a megaplasmid of the strain B. thuringiensis YC-10, was carried out. The bioinformatical search for CRISPR-Cas-system structures included three stages: identification of cas-genes, detection of CRISPR-cassettes and analysis of their structures. Identification of cas-genes was carried out through their amino acid profile using the MacSyFinder program. The detection and analysis of CRISPR cassettes was performed using four applications: 1) CRISPRFinder; 2) CRISPRDetect; 3) PILER-CR; 4) CRISPR Recognition Tool (CRT). A consensus structure for multiple alignment of inter-spacer repeats was obtained and visualized in WebLogo 3. The position of the consensus sequence in the classification of CRISPR-associated repeats was determined through the CRISPRmap web service (v1.3.0). The analysis of the structure of the CRISPR locus was performed using the software platform Artemis (ver. 17.0.1). The type of CRISPR-Cas system was determined in accordance with the latest version of the classification [Koonin et.al. 2017]. As a result of a software search in megaplasmid pYC-1, one CRISPR locus was found, classified as Class I, type I, subtype C. Two CRISPR cassettes and four CRISPR-associated genes were identified. The analysis of the structure of CRISPR-cassettes. The decoded spacer sequences provide information about bacteriophages and foreign plasmids to which this bacterial strain may be resistant. The presence of a CRISPR-Cas system in the plasmid genome may indicate a possible transfer of a given locus from the bacterial chromosome to the plasmid. It can also be assumed that these systems can be transmitted by conjugation in bacterial communities. The bioinformatics algorithm used in this work showed a high efficiency of its use for the detection of CRISPR-Cas-system structures in extrachromosomal elements of the genome.

About the Authors

Arefieva Nadezhda Aleksandrovna, Student, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: arefieva.n4@gmail.com 

Dzhioev Yuri Pavlovich, Candidate of Sciences (Biology), Senior Research Scientist, Head of Laboratory, Research Institute of Biomedical Technologies, Irkutsk State Medical University, 1, Krasnogo Vosstaniya st., Irkutsk, Russian Federation, 664003, tel.: (3952) 24–29–86, e-mail: alanir07@mail.ru 

Borisenko Andrei Yurievich, Graduate Student, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, tel.: (3952) 24–29–86, e-mail: 89500720225@mail.ru 

Stepanenko Lilia Alexandrovna, Candidate of Sciences (Medicine), Senior Research Scientist, Research Institute of Biomedical Technologies, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, tel.: (3952) 24–29–86, e-mail: steplia@mail.ru 

Peretolchina Nadezhda Pavlovna, Graduate Student, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, 664003, Russian Federation, tel.: (3952) 24–29–86, e-mail: nadine1lenz@gmail.com 

Bukin Yuri Sergeevich, Candidate of Sciences (Biology), Senior Research Scientist, Limnological Institute SB RAS, 3, Ulan-Batorskaya st., Irkutsk, 664003, Russian Federation; Irkutsk National Research Technical University, 83, Lermontov st., Irkutsk, 664074, Russian Federation, tel.: (3952) 42–65–04, e-mail: bukinys@lin.irk.ru 

Chemerilova Valentina Ivanovna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: valchem@yandex.ru 

Vyatchina Olga Fedorovna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: olgairk3@rambler.ru 

Sekerina Olga Aleksandrovna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, Russian Federation, 664003, tel.: (3952) 24–38–43, e-mail: o.sekerina@ismu.baikal.ru 

Markova Julia Aleksandrovna, Doctor of Sciences (Biology), Senior Research Scientist, Head of Laboratory, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 42–67–21, e-mail: juliam06@mail.ru 

Yurinova Galina Valerievna, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: yurinova@yandex.ru 

Salovarova Valentina Petrovna, Doctor of Sciences (Biology), Professor, Head of Department, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: vsalovarova@rambler.ru 

Pristavka Alexey Alexandrovich, Candidate of Sciences (Biology), Associate Professor, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: pristavk@gmail.com 

Kuzminova Valeria Mikhailovna, Student, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: ewwwrye@gmail.com 

Martynova Alena Sergeevna, Student, Irkutsk State University, 1, K. Marx st., Irkutsk, 664003, Russian Federation, tel.: (3952) 42–27–17, e-mail: martynovalen@mail.ru 

Zlobin Vladimir Igorevich, Doctor of Sciences (Medicine), Professor, Academician of RAS, Head of Department, Director, Research Institute of Biomedical Technologies, Irkutsk State Medical University, 1, Krasnogo Vosstania st., Irkutsk, Russian Federation, 664003, tel.: (3952) 24–29–86, e-mail: vizlobin@mail.ru

For citation

Arefieva N.A., Dzhioev Yu.P., Borisenko A.Yu., Stepanenko L.A., Peretolchina N.P., Bukin Yu.S., Chemerilova V.I., Vyatchina O.F., Sekerina O.A., Markova Yu.A., Yurinova G.V., Salovarova V.P., Pristavka A.А., Kuzminova V.A., Martynova A.C., Zlobin V.I. Detection and Analysis of CRISPR-Cas System Structures in Genome of Plasmid pYC-1 of Bacillus thuringiensis Strain YC-10. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2018, vol. 26, pp. 3-17. https://doi.org/10.26516/2073-3372.2018.26.3 (in Russian)

Keywords

Bacillus thuringiensis, strain YC-10, plasmids, plasmid pYC-1, CRISPR-Cas system, bioinformatic methods

UDC
576.8
DOI
https://doi.org/10.26516/2073-3372.2018.26.3
References

Peretolchina N.P., Dzhioev Yu.P., Borisenko A.Yu., Voskresenskaya E.A., Paramonov A.I., Stepanenko L.A., Kolbaseeva O.V., Zlobin V.I. Bioinformatsionnyi analiz CRISPR-Cas sistemy shtamma Yersinia pseudotuberculosis IP32953 [Bioinformational analysis of Yersinia pseudotuberculosis IP32953 CRISPR/cas system]. Acta Biomedica Scientifica, 2016, no. 5, pp. 64-68. (in Russian).

Kolbaseeva O.V., Dzhioev Yu.P., Borisenko A.Yu., Stepanenko L.A., Zlobin V.I., Kolbaseeva V. I. Detektsiya struktur CRISPR-Cas sistem v genome shtamma Pseudomonas aeruginosa UCBPP-PA14 metodami bioinformatiki [Detection of CRISPR/Cas system structure in genome of Pseudomonas aeruginosa strain UCBPP-PA14 using bioinformatic methods]. Zhurnal infektologii [Journal of Infectology], 2018. vol. 10, no. 2, pp. 62-63. (in Russian).

Borisenko A.Yu., Dzhioev Yu.P., Paramonov A.I., Bukin Yu.S., Stepanenko L.A., Kolbaseeva O.V., Zlobin I.V. Ispol'zovanie bioinformatsionnykh programmnykh metodov dlya poiska CRISPR-Cas sistem v genomakh shtammov Staphilococcus aureus [Use of bioinformatic methods for search CRISPR/Cas systems in genomes of the strains of Staphylococcus aureus]. Sibirskii meditsinskii zhurnal [Siberian Medical Journal], 2015, no. 2, pp. 71-74. (in Russian).

Stepanenko L.A., Dzhioev Yu.P., Borisenko A.Yu., Zlobin V.I., Kolbaseeva O.V., Malov I.V. Kharakteristika CRISPR-Cas sistem v genome Neisseria meningitidis FDAARGOS_214 30-31 [Characteristic of CRISPR/Cas systems in genome of Neisseria meningitidis FDAARGOS_214 30-31]. Zhurnal infektologii [Journal of Infectology], 2018, vol. 10, no. 1, pp. 30-31. (in Russian).

Makarova K.S., Wolf Y.I., Alkhnbashi O.S., Costa F., Shah S.A., Saunders S.J., Barrangou R., Brouns S.J., Charpentier E., Haft D. H., Horvath P., Moineau S., Mojica F.J., Terns R.M., Terns M.P., White M.F., Yakunin A.F., Garrett R.A., van der Oost J., Backofen R., Koonin E.V. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol., 2015, vol. 13, no. 11, pp. 722-736. https://doi.org/10.1038/nrmicro3569

Carver T., Harris S.R., Berriman M., Parkhill J., McQuillan J.A. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics, 2012, vol. 5, no. 4, pp. 464-469. https://doi.org/10.1093/bioinformatics/btr703

Palma L., Munoz D., Berry C., Murillo J., Caballero P. Bacillus thuringiensis toxins: an overview of their biocidal activity. Toxins, 2014, vol. 6, no. 12, pp. 3296-3325. https://doi.org/10.3390/toxins6123296

Bhaya D., Davison M., Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu. Rev. Genet., 2011, no. 45, pp. 273-297. https://doi.org/10.1146/annurev-genet-110410-132430

Nam K.H., Haitjema C., Liu X., Ding F., Wang H., DeLisa M.P., Ke A. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure, 2012, vol. 20, no. 9, pp. 1574-1584. https://doi.org/10.1016/j.str.2012.06.016

Bolotin A., Quinquis B., Sorokin A., Ehrlich S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, vol. 151, pp. 2551–2561. https://doi.org/10.1099/mic.0.28048-0

Cheng F., Wang J., Song Z., Cheng J., Zhang D., Liu Y. Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes. J. Biotechnol., 2015, vol. 210, pp. 17-18. https://doi.org/10.1016/j.jbiotec.2015.06.395

Navas L.E., Amadio A.F., Ortiz E.M., Sauka D.H., Benintende G.B., Berretta M.F., Zandomeni R.O. Complete Sequence and Organization of pFR260, the Bacillus thuringiensis INTA Fr7-4 Plasmid Harboring Insecticidal Genes. J. Mol. Microbiol. Biotechnol., 2017, vol. 27, no. 1, pp. 43-54. https://doi.org/10.1159/000451056

Cong L., Zhang F. Genome engineering using CRISPR-Cas9 system. Methods Mol. Biol., 2015, vol. 1239, pp. 197-217. https://doi.org/10.1007/978-1-4939-1862-1_10

Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, vol. 315, no. 5819, pp. 1709-1712. https://doi.org/10.1126/science.1138140

Bland C., Ramsey T.L., Sabree F., Lowe M., Brown K., Kyrpides N.C., Hugenholtz P. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 2007, vol. 8, no. 209, pp. 1-8. https://doi.org/10.1186/1471-2105-8-209

van der Oost J., Jore M.M., Westra E.R., Lundgren M., Brouns S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci., 2009, vol. 34, no. 8, pp. 401-407. https://doi.org/10.1016/j.tibs.2009.05.002 

Rousseau C., Gonnet M., Le Romancer M., Nicolas J. CRISPI: a CRISPR interactive database. Bioinformatics, 2009, vol. 25, no. 24, pp. 3317-3318. https://doi.org/10.1093/bioinformatics/btp586

Biswas A., Staals R.H., Morales S.E., Fineran P.C., Brown C.M. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC Genomics, 2016, vol. 17, no. 356. https://doi.org/10.1186/s12864-016-2627-0 

Lange S.J., Alkhnbashi O.S., Rose D., Will S., Backofen R. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res., 2013, vol. 41, no. 17, pp. 8034-8044. https://doi.org/10.1093/nar/gkt606

Doudna J.A., Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, vol. 346, no. 6213, pp. 1258096-1258099. https://doi.org/10.1126/science.1258096

Edgar R.C. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinformatics, 2007, vol. 8, no. 18, pp. 1-6. https://doi.org/10.1186/1471-2105-8-18

Gasiunas G., Sinkunas T., Siksnys V. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell. Mol. Life Sci., 2014, vol. 71, no. 3, pp. 449-465. https://doi.org/10.1007/s00018-013-1438-6

Grissa I., Vergnaud G., Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res., 2007, vol. 35, pp. W52-W57. https://doi.org/10.1093/nar/gkm360

Grissa I., Vergnaud G., Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, vol. 23, no. 8, pp. 172. https://doi.org/10.1186/1471-2105-8-172

Hille F., Charpentier E. CRISPR-Cas: biology, mechanisms and relevance. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 2016, vol. 371, no. 1707, pp. 20150496. https://doi.org/10.1098/rstb.2015.0496

Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell., 2014, vol. 157, no. 6, pp. 1262-1278. https://doi.org/10.1016/j.cell.2014.05.010

Mojica F.J. M., Diez-Villasenor C., Garcia-Martinez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol., 2005, vol. 60, pp. 174-182.

Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol., 2017, vol. 37, pp. 67-78. https://doi.org/10.1016/j.mib.2017.05.008 

Abby S. S., Neron B., Menager H., Touchon M., Rocha E. P. C. MacSyFinder: A Program to Mine Genomes for Molecular Systems with an Application to CRISPR-Cas Systems. PLoS ONE, 2014, vol. 9, no. 10, e110726. https://doi.org/10.1371/journal.pone.0110726

Makarova K.S., Wolf Y.I., Koonin E.V. The basic building blocks and evolution of CRISPR-CAS systems. Biochem. Soc. Trans., 2013, vol. 41, no. 6, pp. 1392-400. https://doi.org/10.1042/BST20130038

Melo A.L., Soccol V.T., Soccol C.R. Bacillus thuringiensis: mechanism of action, resistance, and new applications: a review. Crit. Rev. Biotechnol., 2016, vol. 36, no. 2, pp. 317-26. https://doi.org/10.3109/07388551.2014.960793

Ohba M., Mizuki E., Uemori A. Parasporin, a new anticancer protein group from Bacillus thuringiensis. Anticancer Res., 2009, vol. 29, no. 1, pp. 427-433.

Zlobin V.I., Dzhioev Y.P., Peretolchina N.P., Borisenko A.Y., Stepanenko L.A., Wang Y., Qu Z., Pierneef R., Reva O.N. Prospects to Enhance Phage Therapy by Looking at CRISP Fingerprints in Bacterial Populations. Current Trends in Biomedical Engineering & Biosciences, 2018, vol. 10, no. 5, pp. 1-3.

Murugan K., Babu K., Sundaresan R., Rajan R., Sashital D.G. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol. Cell., 2017, vol. 68, no. 1, pp. 15-25. https://doi.org/10.1016/j.molcel.2017.09.007

Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: a sequence logo generator. Genome Res., 2004, vol. 14, no. 6, pp. 1188-1190.


Full text (russian)