«IZVESTIYA IRKUTSKOGO GOSUDARSTVENNOGO UNIVERSITETA». SERIYA «BIOLOGIYA. ECOLOGIYA»
«THE BULLETIN OF IRKUTSK STATE UNIVERSITY». SERIES «BIOLOGY. ECOLOGY»
ISSN 2073-3372 (Print)

List of issues > Series «Biology. Ecology». 2018. Vol. 25

Results of a Five-year Laboratory Cultivation of the Berlin Poplar Genetically Modified with uidA and nptII Genes

Author(s)
V. V. Pavlichenko, M. V. Protopopova, V. K. Voinikov
Abstract

As a result of the genetic transformation of plants, the loss of a transformant's ability to express the transgene becomes frequent. The causes of such silencing transgenes can be various factors. For example, micropropagation of transgenic plants or their long-term cultivation can lead to a gradual decrease in the expression level of a transgene. At the present study, the preservation of transgenes after five years of cultivation of genetically modified plants of Berlin poplar under laboratory conditions in the absence of a selective factor in a nutrient medium was carried out. Berlin poplar (Populus ×berolinensis Dippel) is a hybrid of laurel poplar (Populus laurifolia Ledeb.) and Italica black poplar (P. nigra L. “Italica”). Genetic transformation of plants was performed using the C58C1 strain of Agrobacterium tumefaciens. The transformation vector pBI121 (Clontech, USA) containing the selective neomycin phosphotransferase II gene – nptII, which determines resistance to kanamycin sulfate and the E. coli reporter uidA gene encoding bacterial enzyme β-D-glucuronidase was used. The transfer of the vector into A. tumefaciens cells was carried out using direct transformation by the freeze-thaw method. The studied transgenic plants of the Berlin poplar were characterized by stable (constant) expression of the uidA and nptII genes. Despite the absence of a selective agent in the nutrient medium, the activity of the nptII gene did not decrease or disappear after 5 years of keeping the plants in a sterile laboratory culture. It is shown that the applied approach of agrobacterium mediated genetic transformation of Berlin poplar can be effectively used to obtain stable transgenic plants without losing newly acquired properties after at least 5 years.

About the Authors

Pavlichenko Vasiliy Valeryevich, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 42–46–59, fax (3952) 51–07–54, e-mail: vpavlichenko@gmail.com 

Protopopova Marina Vladimirovna, Candidate of Science (Biology), Senior Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 42–46–59, fax (3952) 51–07–54, e-mail: marina.v.protopopova@gmail.com 

Voinikov Victor Kirillovich, Doctor of Sciences (Biology), Principal Research Scientist, Siberian Institute of Plant Physiology and Biochemistry SB RAS, 132, Lermontov st., Irkutsk, 664033, Russian Federation, tel.: (3952) 42–46–59, fax (3952) 51–07–54, e-mail: vvk@sifibr.irk.ru

For citation

Pavlichenko V.V., Protopopova M.V., Voinikov V.K. Results of a Five-year Laboratory Cultivation of the Berlin Poplar Genetically Modified with uidA and nptII Genes. The Bulletin of Irkutsk State University. Series Biology. Ecology, 2018, vol. 25, pp. 3-14. https://doi.org/10.26516/2073-3372.2018.25.3 (in Russian)

Keywords

agrobacterium mediated transformation, nptII, uidA, GUS-reporter system, Populus ×berolinensis, transgenic plants, stable transformation

UDC
58.084.1
DOI
https://doi.org/10.26516/2073-3372.2018.25.3
References

Arruda P. Genetically modified sugarcane for bioenergy generation. Current Opinion in Biotechnology, 2012, vol. 23, pp. 315-322. https://doi.org/10.1016/j.copbio.2011.10.012

Yamasaki S., Oda M., Koizumi N., Mitsukuri K., Johkan M., Nakatsuka T., Nishihara M., Mishiba K. De novo DNA methylation of the 35s enhancer revealed by high-resolution methylation analysis. Plant biotechnology, 2011, vol. 2, pp. 223-230. https://doi.org/10.5511/plantbiotechnology.10.1222a

Doyle J.J., Doyle J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 1987, vol. 19, pp. 11-15.

Fladung M., Kumar S. Gene stability in transgenic aspen (Populus). III. T-DNA repeats influence transgene expression differentially among different transgenic lines. Plant Biol., 2002. vol. 4, pp. 329–338. https://doi.org/10.1055/s-2002-32329

Kamo K.K. Long-term expression of the uidA gene in Gladiolus plants under control of either the ubiquitin, rolD, mannopine synthase, or cauliflower mosaic virus promoters following three seasons of dormancy. Plant Cell Rep., 2003, vol. 21, pp. 797-803. https://doi.org/10.1007/s00299-003-0578-9

Kamo K. Long term transgene expression in Lilium longiflorum ‘Nellie White’ grown outdoors and in the greenhouse. Scientia Horticulturae, 2014, vol. 167, pp. 158-163. https://doi.org/10.1016/j.scienta.2013.12.011

Kumpatla S.P., Hall T.C. Recurrent onset of epigenetic silencing in rice harboring a multi-copy transgene. Plant J., 1998, vol. 14, pp. 129–135. https://doi.org/10.1046/j.1365-313X.1998.00097.x

Maghuly F., da C. Machado A., Leopold S., Khan M. A., Katinger H., Laimer M. Long-term stability of marker gene expression in Prunus subhirtella: A model fruit tree species. J. Biotechnol., 2007, vol. 127, pp. 310–321. https://doi.org/10.1016/j.jbiotec.2006.06.016

Meng L., Ziv M., Lemaux P.G. Nature of stress and transgene locus influences transgene expression stability in barley. Plant Mol. Biol., 2006, vol. 62, N 1–2, pp. 15-28. https://doi.org/10.1007/s11103-006-9000-7

Murashige T., Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 1962, vol. 15, pp. 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

Pons E., Peris J.E., Peña L. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics. BMC Biotechnol., 2012, 12:41. https://doi.org/10.1186/1472-6750-12-41

Rajeevkumar S., Anunanthini P., Sathishkumar R. Epigenetic silencing in transgenic plants. Front. Plant. Sci., 2015, vol. 6 (693), pp. 1-8. https://doi.org/10.3389/fpls.2015.00693

Hawkins S., Leple J. C., Cornu D., Jouanin L., Pilate G. Stability of transgene expression in poplar: a model forest tree species. Ann. For. Sci., 2003, vol. 60, pp. 427-438. https://doi.org/10.1051/forest:2003035

Li J., Brunner A.M., Meilan R., Strauss S.H. Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol., 2009, vol. 29, pp. 299-312. https://doi.org/10.1093/treephys/tpn028

Zeng F., Qian J., Luo W., Zhan Y., Xin Y., Yang C. Stability of transgenes in long-term micropropagation of plants of transgenic birch (Betula platyphylla). Biotechnol. Lett., 2010, vol. 32, pp. 151-156. https://doi.org/10.1007/s10529-009-0120-4

Borejsza-Wysocka E., Norelli J. L., Aldwinckle H. S., Malnoy M. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period. BMC Biotechnol., 2010, vol. 10, p. 41. https://doi.org/10.1186/1472-6750-10-41

Ko M. K., Soh H., Kim K.-M., Kim Y.S., Im K. Stable production of transgenic pepper plants mediated by Agrobacterium tumefaciens. Hortscience, 2007, vol. 42, no. 6, pp. 1425–1430. [Electronic resource]. http://hortsci.ashspublications.org/content/42/6/1425.full.pdf+html

Holsters M., de Waele D., Depicker A., Messens E., van Montagu M., Schell J. Transfection and transformation of Agrobacterium tumefaciens. Mol. Gen. Genet., 1978, vol. 163, no. 2, pp. 181–187. https://doi.org/10.1007/BF00267408

Vaucheret H., Béclin C., Elmayan T., Feuerbach F., Godon C., Morel J.-B., Mourrain P., Palauqui J.-C., Vernhettes S. Transgene-induced gene silencing in plants. The Plant Journal, 1998, vol. 16, no. 6, pp. 651-659. https://doi.org/10.1046/j.1365-313x.1998.00337.x

Bonadei M., Zelasco S., Giorcelli A., Gennaro M., Calligari P., Quattrini E., Balestrazzi A. Transgene stability and agronomical performance of two transgenic Basta®-tolerant lines of Populus alba L. Plant Biosystems, 2012, vol. 146, pp. 33-40. https://doi.org/10.1080/11263504.2011.641037

Lardet L., Leclercq J., Benistan E., Dessailly F., Oliver G., Martin F., Montoro P. Variation in GUS activity in vegetatively propagated Hevea brasiliensis transgenic plants. Plant Cell Rep., 2011, vol. 30, pp. 1847-1856. https://doi.org/10.1007/s00299-011-1092-0


Full text (russian)