

Серия «Биология. Экология» 2015. Т. 12. С. 12–22 Онлайн-доступ к журналу: http://isu.ru/izvestia ИЗВЕСТИЯ

Иркутского
государственного
университета

УДК 578.816(282.256.341)

Молекулярно-генетическое исследование Т4-подобных бактериофагов в планктоне реки Селенги

Т. В. Бутина, О. С. Усова, С. А. Потапов, О. И. Белых, А. П. Федотов, С. И. Беликов

Лимнологический институт СО РАН, Иркутск E-mail: tvbutina@mail.ru

Аннотация. Проведено исследование генетического разнообразия Т4-подобных вирусов семейства Myoviridae в водах Селенги на основе анализа гена g23 основного капсидного белка. В результате в Селенге выявлено высокое разнообразие Т4-подобных бактериофагов, большинство из которых оказались близкородственными фагам из эвтрофированных мест обитания. Филогенетическое родство значительной части выявленных последовательностей с фагом, выделенным от E.coli (Escherichia phage 121Q), позволило сделать предположение о принадлежности этих последовательностей вирусам, поражающим патогенные или условно-патогенные бактерии, что служит косвенным свидетельством наличия патогенной микрофлоры в реке.

Ключевые слова: Т4-подобные вирусы, семейство Myoviridae, генетическое разнообразие, ген *g23*, Селенга.

Введение

Вирусы в значительной мере определяют биоразнообразие, структуру, продуктивность и функционирование водных экосистем [11; 23]. Большинство вирусов являются бактериофагами, они влияют на генетическое разнообразие и контролируют численность бактерий и цианобактерий. В современных условиях при постоянном увеличении антропогенных нагрузок и изменении климата вирусам принадлежит особая роль, однако в пресноводных, особенно речных экосистемах, они остаются малоизученными.

Вирусы семейства Myoviridae, принадлежащие отряду хвостатых бактериофагов (Caudovirales), имеют широкий круг хозяев и являются одними из самых многочисленных организмов в морских и пресных водоёмах [7; 24]. Известной группой семейства Myoviridae является род Т4-подобных вирусов ("Т4-like viruses"). Т4-подобные вирусы (Т4-бактериофаги) обладают высокой литической активностью и вызывают гибель клеток хозяина, обусловливая высокую экологическую значимость для водных биоценозов [8].

Т4-подобные вирусы инфицируют различные виды бактерий. К настоящему времени исследовано и охарактеризовано более 40 геномов этих вирусов [13]. Большинство Т4-фагов выделено от *Escherichia coli* и других видов энтеробактерий. Кроме того, Т4-бактериофаги поражают бактерии

родов Aeromonas, Acinetobacter, Pseudomonas, Vibrio, а также цианобактерии (филум Cyanobacteria) [13].

На основе консервативных участков гена основного капсидного белка g23 Т4-бактериофагов разработан набор ПЦР-праймеров для генетической идентификации вирусов этой группы в природных образцах без этапа культивирования [18]. Исследования g23-генов Т4-бактериофагов с помощью разработанных праймеров выявили большое разнообразие и широкое распространение этих вирусов в различных водных экосистемах [5; 9; 10; 15; 18; 27].

Целью настоящей работы стало исследование разнообразия Т4-бактериофагов в водах Селенги посредством анализа гена *g23* основного капсидного белка. Селенга — река в Монголии и России (Республика Бурятия), крупнейший приток озера Байкал. Площадь бассейна Селенги около полумиллиона квадратных километров, 55 % его приходится на территорию Монголии. В среднем за год Селенга приносит в Байкал около 30 км³ воды, что составляет около половины всего притока в озеро. Селенга — важнейший в экономическом и экологическом отношении элемент водосборной системы Байкала, поэтому разносторонние исследования этой водной экосистемы имеют большое значение.

Материалы и методы

Пробы воды отбирали в августе 2013 г. на глубине 0 м на двух станциях в русле Селенги: на территории Монголии (станция № 7: 49°54′50.709′′, 105°25′05.015′′) и на границе с Монголией в пос. Наушки (станция № 10: 50°23′10.615, 106°04′52.200′′).

Образцы воды последовательно фильтровали через поликарбонатные фильтры (Millipore) с диаметром пор 0,2 мкм для удаления фито- и бактериопланктона. Полученную вирусную фракцию концентрировали с помощью ультрацентрифужных концентраторов Vivaspin 500 (Sartorius). Концентрированные образцы использовали в полимеразной цепной реакции (ПЦР) без предварительного выделения ДНК. ПЦР проводили с использованием праймеров к гену *g23*, MZIA1bis и MZIA6 [18]. Реакционная смесь для ПЦР (из реагентов «ИнтерЛабСервис», Россия) в объёме 10 мкл содержала 1,5 mM MgSO₄, 0,2 mM каждого дезоксирибонуклеозидтрифосфата, 20 pmol каждого праймера и 1,0 единицу Таq-полимеразы.

Ампликоны анализировали, как описано ранее [1; 9]. Клонированные с помощью набора CloneJET (Thermo Scientific) фрагменты *g23* секвенировали в фирме «Синтол» (Россия). Полученные нуклеотидные последовательности фрагментов гена *g23* выравнивали, редактировали и транслировали с помощью программы BioEdit (v. 7.0.5) [14]. Идентичные последовательности исключали из дальнейшего анализа. Поиск ближайших гомологов по банку данных NCBI проводили по аминокислотным последовательностям с применением программы BLASTp [6]. Филогенетическое древо реконструировали методом объединения ближайших соседей (neighbor-joining) с помощью программы MEGA6 [17], бутстреп-анализ проводили на основе

500 повторов. Отбор репрезентативных последовательностей g23 для филогенетического анализа из наборов данных, имеющихся в GenBank (полученных из различных водоёмов) проводили с использованием этого же метода.

Результаты и обсуждение

В результате определена 41 последовательность гена g23 Т4-бактериофагов из вод Селенги (22 и 19 клонированных фрагментов со станций № 7 и № 10 соответственно). Полученные библиотеки обозначены как Sel0813_7 (станция № 7) и Sel0813_10 (станция № 10). Каждый клон g23 имеет дополнительное цифровое обозначение, в скобках указано количество идентичных последовательностей (например, Sel0813_7_1(2)). Сходство полученных последовательностей составило 23–99,1 %.

Согласно BLAST-анализу большинство (75 %) проанализированных фрагментов белка g23 имели наибольшее сходство с фрагментами g23 некультивированных Т4-бактериофагов рисовых полей северо-восточного Китая и сточных вод молочного предприятия в Ирландии (табл.). Пять последовательностей имели наибольшее сходство с клоном g23 из Тихого океана. Последовательности Sel0813 7 12 и Sel0813 10 30 оказались гомологичными фрагментам Т4-бактериофагов из рисового биоценоза и французских озёр Бурже и Анси, соответственно. Однако при сравнении нуклеотидных фрагментов гена g23 сходство этих последовательностей составило 99,7 %. Также можно отметить высокую степень сходства (96%) выявленного фрагмента Sel0813 7 1(2) и клона g23 из антарктического озера Лимнополар. По результатам BLAST-анализа значительное количество проанализированных фрагментов имели высокое сходство (более 84 %) с последовательностями Т4-бактериофагов из озёр Бурже и Анси. Среди ближайших родственников также выявлен бактериофаг E. coli - Escherichia phage 121Q (66-67 % сходства).

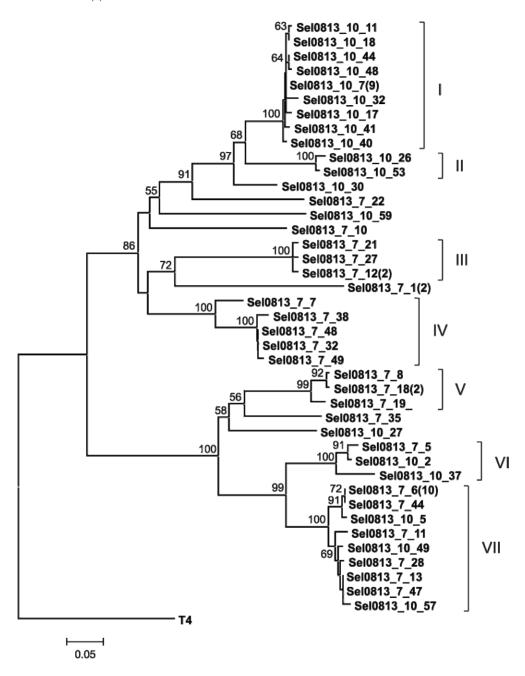
Tаблица Результаты BLAST–анализа фрагментов гена g23 Т4-подобных бактериофагов из вод Селенги

Клоны g23	Источник изоляции ближайшего	Номер Gen-	Процент	Ссыл-
из вод Селенги	гомолога в GenBank	Bank	сходства	ка
Sel0813_7_1(2)	оз. Лимнополар, Антарктика	ACT78906	96	15
Sel0813_7_5	Сточные воды молочной фермы, Ирландия	AFN85705	70	19
Sel0813_7_6(10)	- // -	-//-	72	- // -
Sel0813_7_7	Тихий океан, Британская Ко- лумбия	AAZ17574	91	18
Sel0813_7_8	Сточные воды молочной фермы, Ирландия	AFN85706	76	19
Sel0813_7_10	-//-	AFN85705	71	- // -
Sel0813_7_11	- // -	- // -	71	- // -
Sel0813_7_12(2)	Рисовые поля (вода), Китай	AKG25463	100	- // -
Sel0813_7_13	Сточные воды молочной фермы, Ирландия	AFN85705	72	-//-
Sel0813_7_18(2)	- // -	AFN85706	76	-//-

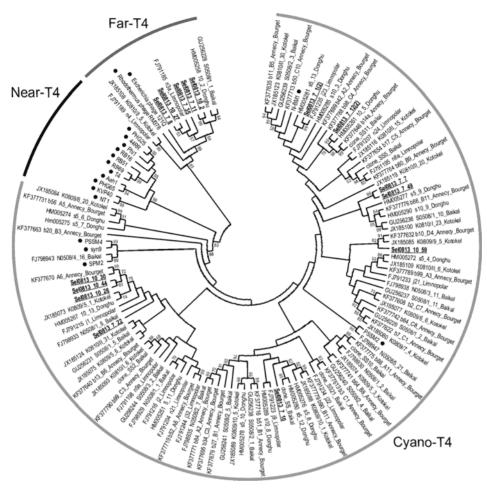
Известия Иркутского государственного университета 2015. Т. 12. Серия «Биология. Экология». С. 12–22

Окончание табл. 15

<u></u>		1	1	ı
Клоны g23	Источник изоляции ближайшего	Номер	Процент	Ссыл-
из вод Селенги	гомолога в GenBank	GenBank	сходства	ка
Sel0813 7 19	-//-	AFN85705	78	-//-
Sel0813_7_21	Рисовые поля (вода), Китай	AKG25463	99	-//-
Sel0813_7_22	Рисовые поля (почва), Китай	BAK52065	90	20
Sel0813_7_27	Рисовые поля (вода), Китай	AKG25463	99	19
Sel0813_7_28	Сточные воды молочной фермы, Ирландия	AFN85705	72	-//-
Sel0813_7_32	Тихий океан, Британская Ко- лумбия	AAZ17574	89	18
Sel0813_7_35	Сточные воды молочной фермы, Ирландия	AFN85705	74	19
Sel0813_7_38	Тихий океан, Британская Ко- лумбия	AAZ17574	86	18
Sel0813_7_44	Сточные воды молочной фермы, Ирландия	AFN85705	72	19
Sel0813_7_47	-//-	AFN85705	71	-//-
Sel0813_7_48	Тихий океан, Британская Колумбия	AAZ17574	88	18
Sel0813 7 49	-//-	-//-	88	- // -
Sel0813_10_2	Сточные воды молочной фермы, Ирландия	AFN85705	70	19
Sel0813 10 5	-//-	- // -	72	- // -
Sel0813 10 7(9)	Рисовые поля (вода), Китай	AKG25497	90	- // -
Sel0813 10 11	-//-	- // -	89	- // -
Sel0813 10 17	- // -	- // -	89	- // -
Sel0813 10 18	- // -	-//-	88	- // -
Sel0813 10 26	Озёра Бурже и Анси, Франция	AHU87159	81	27
Sel0813_10_27	Сточные воды молочной фермы, Ирландия	AFN85706	77	19
Sel0813_10_30	Озёра Бурже и Анси, Франция	AHU87159	100	27
Sel0813_10_32	Рисовые поля (вода), Китай	AKG25497	87	19
Sel0813_10_37	Сточные воды молочной фермы, Ирландия	AFN85705	64	-//-
Sel0813_10_40	Рисовые поля (вода), Китай	AKG25497	89	- // -
Sel0813 10 41	-//-	- // -	89	- // -
Sel0813 10 44	- // -	- // -	88	- // -
Sel0813 10 48	- // -	- // -	89	- // -
Sel0813_10_49	Сточные воды молочной фермы, Ирландия	AFN85705	72	19
Sel0813 10 53	Озёра Бурже и Анси, Франция	AHU87159	82	27
Sel0813_10_57	Сточные воды молочной фермы, Ирландия	AFN85705	71	19
Sel0813 10 59	Болото, северо-восточный Китай	BAL45772	84	26


Сходство большого количества полученных последовательностей с фрагментами g23 Т4-бактериофагов из сточных вод молочной фермы, скорее всего, связано с сельскохозяйственной деятельностью и интенсивным развитием животноводческих хозяйств в бассейне Селенги на территории Монголии.

В числе наиболее сходных не оказалось ни одного фрагмента g23 Т4-подобных вирусов, выявленных ранее в пелагиали оз. Байкал [21]. Однако при сравнении наборов последовательностей g23 из Селенги и Байкала (включая незарегистрированные в GenBank [1]) сходство сообществ Т4-бактериофагов составило 16,8–94,6 %. Наибольшее родство (более 92 %) обнаружено с байкальскими фагами из мелководного эвтрофированного участка Байкала – зал. Мухор в проливе Малое Море [1].


Результаты проведённого филогенетического анализа фрагментов белка g23 представлены на рис. 1 и 2. На рисунке 1 представлено древо, демонстрирующее разнообразие и филогенетические отношения клонов g23 из Селенги. Как видно, полученные последовательности образуют 7 высоко достоверных кластеров (бутстреп-поддержка более 95 %). Три кластера содержат последовательности из пробы со станции № 7, два — со станции № 10 и ещё два кластера содержат последовательности с обеих станций. Таким образом, в результате анализа в водах Селенги выявлено высокое разнообразие Т4-подобных вирусов. Кроме того, ясно прослеживается смена состава популяции Т4-бактериофагов вниз по течению реки, что вполне закономерно, учитывая большое расстояние между станциями отбора, а также наличие крупных притоков (рек Орхон и Ерее-Гол) и населённых пунктов (в том числе г. Сухэ-Батор) близ русла реки на этом участке.

На рисунке 2 представлены результаты филогенетического анализа фрагментов g23 из Селенги и пресных водоёмов — озёр Байкал [21], Котокель [9], Дунху [12], Лимнополар [15], Бурже и Анси [27]. Как упоминалось выше, из наборов фрагментов g23-генов Т4-бактериофагов этих водоёмов предварительно выбраны репрезентативные последовательности. В анализе также использованы гены культивированных бактериофагов рода Т4-подобных вирусов.

Ранее известные культивированные Т4-бактериофаги разделяли на 4 подгруппы по результатам филогенетического анализа генов g18, g19 и g23: Т-, PseudoT-, SchizoT- и ExoT-evens [22]. В первые три подгруппы вошли изоляты от патогенных и условно-патогенных бактерий (энтеробактерий и др.). Подгруппа ExoT-evens включала изоляты Т4-подобных вирусов морских пикоцианобактерий Synechococcus и Prochlorococcus spp. [4; 25]. Позднее появилось большое количество новой информации о структуре генов g23 некультивированных Т4-бактериофагов, выявленных в различных местах обитания, в том числе в природных водоёмах. В настоящее время выделены 3 более крупные подгруппы Т4-бактериофагов: Near-T4 (включает группы Т-, PseudoT-, SchizoT-evens), Cyano-T4 (включает группу ExoT-evens) и Far-T4 [7]. Известным культивированным представителем группы Far-T4 является бактериофаг RM378, выделенный из горячих источников, поражающий бактерии рода Rodothermus.

Рис. 1. Филогенетический анализ фрагментов основного капсидного белка g23 T4-подобных бактериофагов из вод Селенги. В качестве внешней группы использована последовательность белка g23 бактериофага T4 (AAA32503). Бутстрепзначения меньше 50 % не указаны

Рис. 2. Филогенетический анализ фрагментов белка g23 Т4-подобных бактериофагов из р. Селенги и пресноводных озёр. Клоны из Селенги выделены жирным шрифтом и подчеркиванием. Культивированные Т4-бактериофаги и цианофаги, выбранные из базы полных геномов Т4-подобных вирусов [13], а также штамм N-BM1, изолированный от нитчатых токсичных цианобактерий *Nodularia spumigena* из Балтийского моря [16], отмечены кружком. Бутстреп-значения меньше 50 % не указаны

В результате проведённого нами филогенетического анализа установлено, что выявленные последовательности из Селенги, как и фрагменты g23 из других пресных водоёмов, принадлежат подгруппам Суапо-Т4 и Far-T4 (см. рис 2).

Поскольку группа Суапо-Т4 включает культивированные фаги, поражающие цианобактерии, считается, что все некультивированные бактериофаги этой группы принадлежат Т4-подобным цианофагам. Исходя из этого, можно предположить, что выявленные нами в Селенге последовательности группы Суапо-Т4 принадлежат Т4-цианофагам. Следует отметить, что круг

хозяев этой самой многочисленной группы остается слабо изучен, поэтому остаётся вероятность того, что он может включать не только автотрофные, но и гетеротрофные бактерии.

Т4-бактериофаги, близкие культивированным фагам группы Near-T4, поражающим патогенные и условно-патогенные бактерии, в Селенге не выявлены. Однако бактериофаг 121Q (Escherichia phage 121Q), выделенный от *E. coli*, входит в состав группы Far-T4, т. е. исходя из результатов филогенетического анализа, Т4-подобные вирусы патогенных и условно-патогенных бактерий выходят за рамки подгруппы Near-T4. Значительное количество проанализированных нами фрагментов кластеризуются с бактериофагом 121Q, поэтому высоко вероятно, что Т4-бактериофаги из Селенги, входящие в эту группу, также поражают патогенные и/или условно-патогенные бактерии. Данное предположение согласуется с проведёнными микробиологическими исследованиями приграничного участка Селенги, в результате которых показано, что вода реки не отвечает санитарным нормам: в ней зарегистрировано повышенное содержание микроорганизмов, отмечено развитие колиформных микроорганизмов и бактерий рода *Enterococcus* [3; 4].

В целом фрагменты g23 из Селенги преимущественно кластеризуются и сходны с генами из высокотрофных водных экосистем, включая рисовые биоценозы. Сходство Т4-бактериофагов с фагами эвтрофированных водоёмов, с одной стороны, может быть связано с мелководностью этих экосистем и, соответственно, с привнесением в их воды бентосных микроорганизмов, с другой стороны — с наличием сходных трофических условий в данных водоёмах. Ранее нами была выявлена тенденция влияния факторов среды, определяющих трофический статус водоёмов, на распространение и формирование сообществ Т4-бактериофагов [9]. Проведённые комплексные исследования на российском участке течения Селенги показали, что экологическое состояние реки ухудшается и трофность вод увеличивается [2], что также может быть фактом в пользу влияния условий среды на распространение вирусов.

Заключение

Впервые в крупнейшем притоке Байкала р. Селенге проведён анализ широкораспространённых Т4-подобных вирусов семейства Myoviridae. В результате выявлено высокое разнообразие Т4-бактериофагов, отмечена смена состава популяции этих вирусов вдоль русла реки. Предположено с большой долей вероятности, что проанализированные последовательности принадлежат Т4-подобным цианофагам, а также бактериофагам, поражающим патогенные и условно-патогенные бактерии. Филогенетическое родство значительной части выявленных последовательностей с Escherichia phage 121Q является косвенным свидетельством наличия патогенной микрофлоры в реке и подтверждает результаты ранее проведённых микробиологических исследований.

Авторы выражают благодарность участникам экспедиции по Селенге Т. Я. Косторновой, И. В. Томберг, Е. П. Чебыкину, Е. Н. Водневой за помощь в отборе проб.

Работа выполнена в рамках программы № VI.50.1.4. при поддержке проекта СО РАН №14 2013 г. (совместного с Академией наук Монголии и Министерством образования, культуры и науки Монголии) и проектов $P\Phi U N 14-04-90421$, 14-44-04148 р сибирь_а.

Список литературы

- 1. Генетическое разнообразие Т4-подобных бактериофагов в озере Байкал / С. А. Потапов [и др.] // Изв. Иркут. гос. ун-та. Сер. Биология. Экология. 2013. Т. 6, № 3(1). С. 14—19.
- 2. Качество воды р. Селенга на границе с Монголией в начале XXI в. / Л. М. Сороковикова [и др.] // Метеорология и гидрология. -2013. -№ 2. -C. 93–103.
- 3. Ковадло А. С. Изучение бактериопланктона реки Селенги и оценка качества вод по микробиологическим показателям / А. С. Ковадло, В. В. Дрюккер // Изв. Иркут. гос. ун-та. Сер. Биология. Экология. − 2010. − Т. 3, № 2. − С. 80–87.
- 4. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2 / E. Hambly [et al.] // Proc. Natl. Acad. Sci. USA. 2001. Vol. 98. P. 11411–11416.
- 5. Bellas C. M. High diversity and potential origins of T4-type bacteriophages on the surface of Arctic glaciers / C. M. Bellas, A. M. Anesio // Extremophiles. -2013. Vol. 17. P. 861-870.
- 6. BLAST Assembled RefSeq Genomes [Electronic resource]. URL: http://blast.ncbi.nlm.nih.gov.
- 7. Comeau A. M. The capsid of the T4 phage superfamily: the evolution, diversity and structure of some of the most prevalent proteins in the biosphere / A. M. Comeau, H. M. Krisch // Mol. Biol. Evol. 2008. Vol. 25. P. 1321–1332.
- 8. Desplats C. The diversity and evolution of the T4-type bacteriophages / C. Desplats, H. M. Krisch // Res. Microbiol. 2003. Vol. 154. P. 259–267.
- 9. Diversity of the major capsid genes (*g23*) of T4-like bacteriophages in the eutrophic Lake Kotokel in East Siberia, Russia / T. V. Butina [et al.] // Arch. Microbiol. 2013. Vol. 195. P. 513–520.
- 10. Evaluation of two approaches for assessing the genetic similarity of virioplankton populations as defined by genome size / S. Jamindar [et al.] // Appl. Environ. Microbiol. 2012. Vol. 78(24). P. 8773–8783.
- 11. Fuhrman J. A. Marine viruses and their biogeochemical and ecological effects / J. A. Fuhrman // Nature. . 1999. Vol. 399. P. 541–548.
- 12. Genetic diversity of T4 virioplankton, inferred from *g23* gene, in Wuhan Donghu Lake / H. Z. Huang [et al.] // China Environ. Sci. 2011. Vol. 31. P. 44–447 (in Chinese with English abstract).
- 13. GGC T4-like Genome website. [Electronic resource]. URL: http://phage.ggc.edu.
- 14. Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT/T. A. Hall // Nucl. Acids Symp. Ser. 1999. Vol. 41 P. 95-98.
- 15. High diversity of the viral community from an Antarctic Lake / A. López-Bueno [et al.] // Science. 2009. Vol. 326. P. 858–861.

- 16. Jenkins C. A. Diversity of cyanophages infecting the heterocystous filamentous cyanobacterium *Nodularia* isolated from the brackish Baltic Sea / C. A. Jenkins, P. K. Hayes // J. Mar. Biol. Ass. UK. 2006. Vol. 86. P. 529–536.
- 17. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0 / K. Tamura [et al.] // Mol. Biol. Evol. 2013. Vol. 30. P. 2715–2729.
- 18. Marine T4 type bacteriophages, a ubiquitous component of the dark matter of the biosphere / J. Filée [et al.] // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102. P. 12471–12476.
 - 19. NCBI database. [Electronic resource]. URL: http://www.ncbi.nlm.nih.gov.
- 20. Phylogenetic diversity and assemblage of major capsid genes (g23) of T4-type bacteriophages in paddy field soils during rice growth season in Northeast China / J. Liu [et al.] // Soil Sci. Plant Nutr. 2012. Vol. 58(4). P. 435–444.
- 21. Phylogenetic diversity of T4-like bacteriophages in Lake Baikal, East Siberia / T. V. Butina [et al.] // FEMS Microbiol. Lett 2010. Vol. 309. P.122–129.
- 22. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages / F. Tétart [et al.] // J. Bacteriol. 2001. Vol. 183. P. 358–366.
- 23. Schwalbach M. S. Viral effects on bacterial community composition in marine plankton microcosms / M. S. Schwalbach, I. Hewson, J. A. Fuhrman // Aquat. Microb. $Ecol.-2004.-Vol.\ 34-P.\ 117-127.$
- 24. The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples [Electronic resource] / S. J. Williamson [et al.] // PLoS ONE. 2008. Vol. 3. e1456. URL: http://journals.plos.org/ plosone/article?id=10.1371/journal.pone.0001456.
- 25. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations [Electronic resource] / M. B. Sullivan [et al.] // PLoS Biol. 2005. Vol. 3(5) e144. URL: http://www.plosbiology.org/article/info%3Adoi%2F10. 1371%2Fjournal.pbio.0030144.
- 26. Characterization of the major capsid genes (g23) of T4-type bacteriophages in the wetlands of northeast / C. Zheng [et al.] // Microb. Ecol. -2013. Vol. 65(3). P. 616-625.
- 27. Zhong X. Differing assemblage composition and dynamics in T4-like myophages of two neighbouring sub-alpine lakes / X. Zhong, S. Jacquet // Freshwater Biology. 2014. Vol. 59(8). P. 1577–1595.

Molecular Genetic Study of T4-like Bacteriophages in Plankton of Selenga River

- T. V. Butina, O. S. Usova, S. A. Potapov, O. I. Belykh,
- A. P. Fedotov, S. I. Belikov

Limnological Institute SB RAS, Irkutsk

Abstract. Genetic diversity of T4-like bacteriophages of the family *Myoviridae* from Selenga River was analyzed using major capsid protein gene g23. As a result, high diversity of T4-like phages, closely related to phages of eutrophic habitats, was revealed in the Selenga River. The phylogenetic relationship of the significant identified phage sequences isolated from *E. coli* (Escherichia phage 121Q) assumes that these sequences belong to viruses infecting pathogenic or potentially pathogenic bacteria. This attests to indirect evidence of the presence of pathogenic organisms in the river.

Keywords: T4-like viruses, family *Myoviridae*, genetic diversity, gene *g23*, Selenga River.

Бутина Татьяна Владимировна кандидат биологических наук, старший научный сотрудник Лимнологический институт СО РАН 664033, г. Иркутск, ул. Улан-Баторская, 3 тел.: (3952) 51–18–74 e-mail: butina@lin.irk.ru

Усова Ольга Сергеевна техник
Лимнологический институт СО РАН 664033, г. Иркутск, ул. Улан-Баторская, 3 тел.: (3952) 42–54–15 e-mail: oljausova@mail.ru

Потапов Сергей Анатольевич научный сотрудник
Лимнологический институт СО РАН 664033, г. Иркутск, ул. Улан-Баторская, 3 тел.: (3952) 42–54–15 e-mail: poet1988@list.ru

Белых Ольга Ивановна кандидат биологических наук, доцент, ведущий научный сотрудник Лимнологический институт СО РАН 664033, г. Иркутск, ул. Улан-Баторская, 3 тел.: (3952) 42–54–15 e-mail: belykh@lin.irk.ru

Федотов Андрей Петрович доктор геолого-минералогических наук, заведующий лабораторией Лимнологический институт СО РАН 664033, г. Иркутск, ул. Улан-Баторская, 3 тел.: (3952) 42–53–12 e-mail: mix@lin.irk.ru

Беликов Сергей Иванович кандидат биологических наук, профессор, заведующий лабораторией Лимнологический институт СО РАН 664033, г. Иркутск, ул. Улан-Баторская, 3 тел.: (3952) 51–18–74 e-mail: sergeibelikov47@gmail.com

Butina Tatyana Vladimirovna Candidate of Sciences (Biology), Senior Research Scientist Limnological Institute SB RAS 3, Ulan-Batorskaya st., Irkutsk, 664033 tel.: (3952) 51–18–74 e-mail: butina@lin.irk.ru

Usova Olga Sergeevna Technician Limnological Institute SB RAS 3, Ulan-Batorskaya st., Irkutsk, 664033 tel.: (3952) 42–54–15 e-mail: oljausova@mail.ru

Potapov Sergey Anatolyevich Research Scientist Limnological Institute SB RAS Ulan-Batorskaya St., Irkutsk, 664033 tel.: (3952) 42–54–15 e-mail: poet1988@list.ru

Belykh Olga Ivanovna Candidate of Sciences (Biology), Leading Research Scientist, Associate Professor Limnological Institute SB RAS 3, Ulan-Batorskaya st., Irkutsk, 664033 tel.: (3952) 42–54–15 e-mail: belykh@lin.irk.ru

Fedotov Andrey Petrovich
Doctor of Sciences (Geology), Head of
Laboratory
Limnological Institute SB RAS
3, Ulan-Batorskaya st., Irkutsk, 664033
tel.: (3952) 42–53–12
e-mail: mix@lin.irk.ru

Belikov Sergey Ivanovich Doctor of Sciences (Biology), Professor, Head of Laboratory Limnological Institute SB RAS 3, Ulan-Batorskaya st., Irkutsk, 664033 tel.: (3952) 51–18–74 e-mail: sergeibelikov47@gmail.com