

Серия «Биология. Экология» 2008. T. 1, № 2. C. 94–96 Онлайн-доступ к журналу:

http://isu.ru/izvestia

ИЗВЕСТИЯ Иркутского государственного университета

УДК 581.19+547.992+ 543.429

Пренилхалконы хмеля обыкновенного (Humulus lupulus 1.): выделение, строение, перспективы использования

А. Н. Чеснокова, В. И. Луцкий

Иркутский государственный технический университет, Иркутск E-mail: alex chesnokova@yahoo.com

Аннотация. Из хмеля, применяемого на пивоваренных предприятиях Иркутской области, выделено и идентифицировано спектральными методами (ИК-, УФ-, ЯМР-спектроскопия, масс-спектрометрия) четыре пренилхалкона.

Ключевые слова: пивоварение, хмель обыкновенный, пренилированные флавоноиды, пренилированные халконы, ксантогумол.

Хмель обыкновенный (Humulus lupulus L.) широко распространенное и удивительно полезное растение, которое с давних пор используется человеком. Он культивируется практически во всех странах умеренного климата, прежде всего, как сырье для производства пива. Именно различные сорта хмеля придают пиву своеобразный аромат и вкус, а также способствуют его консервации. Помимо пивоварения хмель используется в хлебопекарной промышленности, в научной и народной медицине.

Для медицинских целей используют соцветия (шишки) хмеля обыкновенного, которые обладают разносторонними фармакологическими свойствами: успокаивающим, обезболивающим, снотворным, противовоспалительным. Основными веществами, обусловливаюбиологическую активность хмеля, являются горькие и фенольные соединения, а также эфирное масло [1].

Среди фенолов хмеля присутствуют такие уникальные соединения, как пренилированные флавоноиды халконового и флаванонового типов. Пренилфлавоноидам в прошлом не уделялось достаточного внимания ни с точки зрения хмелеводства, ни с точки зрения использования их в процессе производства пива. И только в конце прошлого столетия учёные начали активное изучение данных веществ, в связи с выявлением их высокой биологической активности.

В настоящее время в хмеле обнаружено более двух десятков соединений, относящихся к группе пренилированных флавоноидов.

Пренилированные флавоноиды хмеля обладают чрезвычайно широким спектром биологической активности. Они проявляют антиканцерогенные, фитоэстрагенные, антиоксидантные и противовирусные свойства. В частности, ксантогумол в настоящее время изучается как потенциальное противораковое средство [3]. 6и 8-пренилнарингенин проявляют фитоэстрогенную активность. Фитоэстрогены значительно снижают риск возникновения, например, рака молочной железы, матки, толстой кишки и простаты [5].

Показан достаточно широкий спектр противовирусного действия пренилфлавоноидов хмеля. В культуре клеток обогащенные ксантогумолом экстракты хмеля умеренно угнетают репродукцию вируса диареи крупного рогатого скота, который служит суррогатной моделью вируса гепатита С человека HCV, вируса простого герпеса типа 2 HSV-2 и риновируса [5].

Установлена также антиоксидантная активность пренилфлавоноидов, их действие проявляется в нейтрализации активных радикалов кислорода и торможении процессов свободнорадикального окисления, лежащих в основе развития сердечно-сосудистых заболеваний [4].

Ксантогумол, изоксантогумол и пренилнарингенин являются, как предполагается, основными соединениями, определяющими положительное влияние пива на здоровье человека при умеренном его потреблении. В связи с этим в настоящее время в мировой практике пивоварения актуальной задачей является повышение содержания пренилированных халконов в пиве, разработка технологий производства пива и хмелевых экстрактов, обогащенных ксантогумолом.

Целью данной работы являлось выделение и установление строения пренилированных халконов из хмеля, поступающего на пивоваренные заводы Иркутской области и идентификация полученных соединений.

Объектом исследования являлся гранулированный хмель сорта «Магнум». Выделение веществ осуществляли по разработанной нами ранее методике. Сырье последовательно и исчерпывающе экстрагировалось в аппарате Сокслета растворителями с увеличивающейся полярностью: гексан – бензол – хлороформ – метанол (рис. 1).

Все фракции после удаления растворителей (при температуре не выше 55 °C) были проанализированы методом тонкослойной

хроматографии. Результаты показали наличие интересующих нас соединений в бензольной фракции. В хлороформной и метанольной фракциях содержались следовые количества пренилхалконов.

Бензольную фракцию подвергли хроматографированию на силикагеле. Проведя несколько разделений методом колоночной и флеш-хроматографии в подобранных нами ранее условиях [2], мы выделили четыре индивидуальных соединения, относящихся к классу пренилхалконов.

Выделенные соединения при помощи УФ-, ИК-, ЯМР- и масс-спектров были идентифицированы, как ксантогумол и ксантогумол D, ксантогумол C и 1", 2" – дигидроксантогумол С (рис. 2).

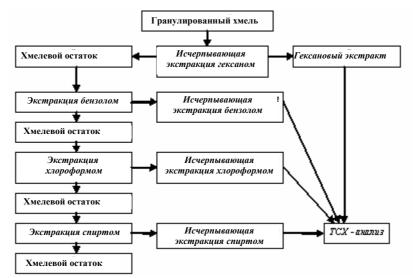


Рис. 1. Принципиальная схема экстракции хмеля

Рис. 2. Строение выделенных пренилхалконов

Литература

- 1. Зузук, Б. М. Хмель вьющийся обыкновенный. Аналитический обзор / Б. М. Зузук, Р. В. Куцик // Провизор. -2004. -№ 14. C. 18-19.
- 2. Чеснокова А. Н. Оптимизация условий выделения пренилированных флавоноидов из хмеля (*Humulus lupulus* L.) / А. Н. Чеснокова, В. И. Луцкий, А. С. Громова // Материалы Всерос. научпракт. конф. «Пищевые технологии, качество и безопасность продуктов питания». Иркутск: Издво ИрГТУ. 2007. С. 32–37.
- 3. Miranda C. L. Cytotoxic and antiproliferative effects of prenylated chalcones in human cancer cell

- lines and in cultured ret hepatocytes / C. L. Miranda [et al.] // Food Chem. Toxicol. $-1999. N_{\odot} 37(9). P. 271-285.$
- 4. Miranda C. L. Antioxidant and prooxidant action of prenylated and nonprenylated chalcones and flavanones in vitro / C. L. Miranda [et al.] // Agric. Food Chem. -2000. № 48. P. 3876.
- 5. Stevens J. F. Chemistry and biology of hop flavonoids / J. F. Stevens, C. L. Miranda, D. R. Buhler // Am. Soc. Brew. Chem. − 1998. − № 56(4). − P. 136–145.

Prenylchalcones of hop (Humulus lupulus l.): isolation, structure, aspects of application

Chesnokova A. N., Lutsky V. I.

Irkutsk State Technical University, Itrutsk

Abstract. Four prenylchalcones were isolated from hops using in breweries of Irkutsk region. Structure of isolated compounds was elucidated with spectral methods (IK, UF, NMR, MS).

Key words: brewing, hop, Humulus lupulus L., prenylated flavonoid, prenylated chalcone, xanthohumol.

Чеснокова Александра Николаевна Иркутский государственный технический университет 664074, г. Иркутск, ул. Лермонтова, 85 аспирант тел. (395 2) 40–51–22, факс (3952) 40–51–00, E-mail: alex chesnokova@yahoo.com

Луцкий Владимир Илларионович Иркутский государственный технический университет 664074, г. Иркутск, ул. Лермонтова, 85 доктор химических наук, профессор кафедры органической химии и пищевых технологий, тел. (395 2) 40–51–22, факс (395 2) 40–51–00 Chesnokova Aleksandra Nikolaevna Irkutsk State Technical University 664074, Irkutsk, 85, Lermontova St. doctoral student phone: (395 2) 40–51–22, fax: (395 2) 40–51–00 E-mail: alex chesnokova@yahoo.com

Lutsky Vladimir Illarionovitch Irkutsk State Technical University 664074, Irkutsk, 85, Lermontova St. D. Sc. in Chymestry, Prof., Department of Organic Chemistry and Food Technologies phone: (395 2) 40–51–22, fax: (395 2) 40–51–00